Applied physics

, Volume 11, Issue 2, pp 141–146 | Cite as

Theory of the negative photoconductivity in crossed fields

  • W. Schneider
Contributed Papers

Abstract

The photocurrent in crossed fields is characterized by the feedback of the transverse ambipolar drift of the excess carriers on the particle velocities in the longitudinal direction. In extrinsic semiconductors this reduction of the particle velocities may cause a negative photocurrent which is here discussed for the case of low plasma densities considering the influence of the ambipolar particle motions, the diffusion currents, the surface recombination, the bulk lifetime, the sample thickness, and the physical magnetoresistance. Numerical calculations were performed forn-InSb at 85 K.

PACS Code

72.40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A.Grinberg, S.R.Novikov, S.M.Ryvkin: Sov. Phys.-Doklady6, 49 (1961)ADSGoogle Scholar
  2. 2.
    V.N.Dobrovol'skiî: Sov. Phys.-Solid State4, 236 (1962)Google Scholar
  3. 3.
    V.N.Dobrovol'skiî: Sov. Phys.-Solid State4, 2056 (1963)Google Scholar
  4. 4.
    E.A.Zavadskiî, Yu.T.Kovrizhnykh, I.G.Fakidov: Sov. Phys.-Solid State4, 141 (1963)Google Scholar
  5. 5.
    V.N.Dobrovol'skiî, Fang Wang An: Sov. Phys.-Semic.3, 669 (1969)Google Scholar
  6. 6.
    S.Hongo, Z.Ueda, J.Shirafuji, Y.Innishi: J. Phys. Soc. Jap.31, 608 (1971), and32, 1027 (1973)Google Scholar
  7. 7.
    W.Schneider, K.Hübner, G.Decker, H.Röhr: Phys. Lett.41 A, 383 (1972)Google Scholar
  8. 8.
    C.D.Nomicos, P.C.Euthymiou: J. Appl. Phys.43, 5131 (1972)CrossRefADSGoogle Scholar
  9. 9.
    C.D.Nomicos, A.Th.Philadelpheus, P.C.Euthymiou: J. Appl. Phys.46, 4106 (1975)CrossRefADSGoogle Scholar
  10. 10.
    W.vanRoosbroeck: Phys. Rev.91, 282 (1953)CrossRefADSGoogle Scholar
  11. 11.
    H.Weiss: “Magnetoresistance”, inSemiconductors and Semimetals (Academic Press, New York 1966) Vol. 1Google Scholar
  12. 12.
    D.L.Rode: “Low-Field Electron Transport”, and J.D.Wiley: “Mobility of Holes in III-V Compounds”, inSemiconductors and Semimetals (Academic Press, New York 1975) Vol. 10Google Scholar
  13. 13.
    J.L.Davis: Bull.-Phys. Soc.6, 18 (1961)Google Scholar
  14. 14.
    V.Roberts, J.E.Quarrington: J. Electron1, 152 (1955)Google Scholar
  15. 15.
    H.J.Fossum, B.Ancker-Johnson: Phys. Rev. B8, 2850 (1973)CrossRefADSGoogle Scholar
  16. 16.
    H.D.Baumgart, G.Nimtz, P.Kokoschinegg: Phys. stat. sol. (a)12, 477 (1972)CrossRefGoogle Scholar
  17. 17.
    R.A.Laff, H.Y.Fan: Phys. Rev.121, 53 (1961)CrossRefADSGoogle Scholar
  18. 18.
    A.C.Beer: “Galvanomagnetic Effects in Semiconductors”, inSolid State Physics Supplement 4 (Academic Press, New York and London 1963)Google Scholar
  19. 19.
    R.A.Smith:Semiconductors (Cambridge University Press, London 1961), p. 311 and p. 315Google Scholar
  20. 20.
    K.Hübner, A.Neidig: Phys. Lett.44 A, 233 (1973)CrossRefGoogle Scholar
  21. 21.
    H.Bruhns, K.Hübner, A.Neidig, L.Schenk, W.Schneider: Appl. Phys.10, 33 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Schneider
    • 1
  1. 1.Institut für Angewandte Physik IIUniversität HeidelbergHeidelbergGermany

Personalised recommendations