Advertisement

Soviet Physics Journal

, Volume 31, Issue 10, pp 826–829 | Cite as

Spontaneous compactification in A d-dimensional quantum gravity model

  • S. D. Odintsov
  • V. M. Shakhmatov
Physics of Elementary Particles and Field Theory

Abstract

It is shown that in a d-dimensional quantum gravity model of special type, AdS4×Sd−4 compactification is allowed. When d=5, M4×S1 compactification is allowed. Here AdS4, is anti-de Sitter space, M4, is Minkowski space, and Sd−4 is a (d−4)-dimensional sphere. The Casimir energy is computed in the 5-dimensional quantum gravity model on the M4×S1 gravitational background, and in the d-dimensional (odd d) quantum gravity on the Md−1×S1 background.

Keywords

Quantum Gravity Minkowski Space Gravity Model Casimir Energy Dimensional Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. Ya. Aref'eva and I. V. Volovich, Usp. Fiz. Nauk,145, 655 (1985)Google Scholar
  2. 2.
    A. Salam and J. Strathdee, Ann. Phys.,141, 316 (1982).Google Scholar
  3. 3.
    E. Cremmer and J. Scherk, Nucl. Phys.,B108, 409 (1976); P. G. O. Freund and M. A. Rubin, Phys. Lett.,94B, 233 (1980); Q. Shafi and C. Wetterich, Phys. Lett.,129B, 387 (1983).Google Scholar
  4. 4.
    D. V. Volkov and V. I. Tkach, Pis'ma Zh. Éksp. Teor. Fiz.,32, 681 (1980); Teor. Mat. Fiz.,5, 171 (1982); D. V. Volkov, D. P. Sorokin, and V. I. Tkach, Teor. Mat. Fiz.,56, 171 (1983).Google Scholar
  5. 5.
    V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett.,125B, 139 (1983); G. V. Lavrelashvili and P. G. Tinyakov, Yad. Fiz.,41, 27 (1985).Google Scholar
  6. 6.
    I. Ya. Aref'eva and I. V. Volovich, Teor. Mat. Fiz.,64, 329 (1985).Google Scholar
  7. 7.
    N. A. Voronov and Ya. I. Kogan, Pis'ma Zh. Éksp. Teor. Fiz.,38, 262 (1983); D. J. Toms, Phys. Lett.,129B, 31 (1983); P. Candelas and S. Weinberg, Nucl. Phys.,B237, 397 (1984).Google Scholar
  8. 8.
    T. Appelquist and A. Chodos, Phys. Rev.,28D, 772 (1983); A. Chodos and E. Meyers, Ann. Phys.,156, 412 (1984).Google Scholar
  9. 9.
    M. H. Sarmadi, Nucl. Phys.,B263, 187 (1986); S. Randjbar-Daemi and M. H. Sarmadi, Phys. Lett.,151B, 343 (1985).Google Scholar
  10. 10.
    Nguyen Van Hieu, Fortsch. Phys.,36, 441 (1986).Google Scholar
  11. 11.
    V. G. Bagrov, I. L. Bukhbinder, and S. D. Odintsov, Yad. Fiz.,45, 1192 (1987).Google Scholar
  12. 12.
    E. S. Fradkin and A. A. Tseytlin, Phys. Rep.,119C, 233 (1985).Google Scholar
  13. 13.
    E. S. Fradkin and A. A. Tseytlin, Nucl. Phys.,B201, 469 (1982).Google Scholar
  14. 14.
    B. S. De Witt, Phys. Rev.,162, 1195 (1967); R. Kallosh, Nucl. Phys.,B78, 293 (1974); I. Ya. Aref'eva, A. A. Slavnov, and L. D. Faddeev, Teor. Mat. Fiz.,21, 311 (1974).Google Scholar
  15. 15.
    T. Inami and O. Yasuda, Phys. Lett.,133B, 180 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • S. D. Odintsov
    • 1
  • V. M. Shakhmatov
    • 1
  1. 1.Lenin Komsomol Pedagogical InstituteTomsk

Personalised recommendations