Rheological studies on patients with posterior subretinal neovascularization and exudative age-related macular degeneration

  • Werner Inhoffen
  • Zita Nüßgens
Clinical Investigations

Abstract

To investigate the potential influence of a decreased perfusion rate of the choriocapillaris on the development of age-related macular degeneration (ARMD) with subretinal neovascularization (SRNV) apparently caused by disturbed flow properties of blood, we compared the hemorheological parameters of blood from 35 patients suffering from ARMD with SRNV with those from the 35 healthy patients of the same age. In both groups hematocrit, plasma viscosity, erythrocyte filtrability, aggregation, aggregating proteins, leukocyte and thrombocyte count, differentiation of leukocytes, thrombelastography, PTT, Quick test, and rheological profiles were comparable. The differences were not significant (P>0.05). These results refute the hypothesis that changed flow properties of blood are the primary cause of the pathogenesis of ARMD with SRNV.

Keywords

Viscosity Potential Influence Perfusion Rate Flow Property Macular Degeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backhaus K, Erichson B (1987) Multivariate Analysenmethoden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Berkow JW (1984) Subretinal neovascularisation in senile macular degeneration. Am J Ophthalmol 97:143–147PubMedGoogle Scholar
  3. 3.
    Bill A (1978) Anatomy and physiology of retinal, papillar and uveal vascularization. In: 5th Congress of the European Society of Ophthalmology, Hamburg 1976. Enke, StuttgartGoogle Scholar
  4. 4.
    Blumenkranz MS, Russell SR (1986) Risk factors in age-related maculopathy complicated by choroidal neovascularization. Ophthalmology 96:552–558Google Scholar
  5. 5.
    Brunner R, Heinen A, Sickel W, Schäfer J, Lemmen K, Konen W (1986) Individuelle Therapie bei Problempatienten mit chronischen retinalen und chorioretinalen Durchblutungsstörungen unterschiedlicher Genese. Fortschr Ophthalmol 83:684–686PubMedGoogle Scholar
  6. 6.
    Chen DC, Fitzke FW, Pauleikhoff D, Bird AC (1989) Poor choroidal perfusion is a cause of visual morbidity in age-related macular degeneration. Invest Ophthalmol Vis Sci 30 [Suppl]:153Google Scholar
  7. 7.
    Chien S (1975) Biophysical behavior of red cells in suspensions. In: Surgenor DMcN (ed) The red blood cell. Academic Press, New York, pp 1031–1121Google Scholar
  8. 8.
    Conner T, Glaser B (1987) RPE cells can simultaneously release inhibitors and stimulators of endothelial cell proliferation. Invest Ophthal Vis Sci [Suppl] 28:203Google Scholar
  9. 9.
    Coscas G (1987) Subretinal neovascularisation in senile macular degeneration. Eye 1:364–378PubMedGoogle Scholar
  10. 10.
    Driessen G, Hoyman G (1987) Concerning the influence of hematocrit and red blood cell aggregation on blood viscosity in vivo. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and hemorheology. Springer, Berlin Heidelberg New York, pp 131–142Google Scholar
  11. 11.
    Eagle R (1984) Mechanisms of maculopathy. Ophthalmology 91:613–625PubMedGoogle Scholar
  12. 12.
    Engler RL, Schmid-Schönbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111:98–111PubMedGoogle Scholar
  13. 13.
    Flamm P (1987) Zur Therapie der degenerativen Makulopathie mit Cosaldon A+ E. Klin Monatsbl Augenheilkd 190:59–66Google Scholar
  14. 14.
    Forst H, Fujita Y, Weiss T, Messmer K (1986) Effekte von Hdmodilution und vasoaktiven Pharmaka bei chronischer experimenteller arterieller Verschlußkrankheit. In: Trübestein G (ed) Conservative therapy of arterial occlusive disease. Thieme, Stuttgart, pp 268–272Google Scholar
  15. 15.
    Friedman E, Smith TR, Kuwabara T (1963) Senile choroidal vascular patterns and drusen. Arch Ophthalmol 69:114–124Google Scholar
  16. 16.
    Grindle J, Marshall J (1978) Ageing changes in Bruch's membrane and their functional implications. Trans Ophthalmol Soc UK 98:172–175PubMedGoogle Scholar
  17. 17.
    Harkness J (1963) A new instrument for the measurement of plasma viscosity. Lancet II: 280Google Scholar
  18. 18.
    Heidrich H, Harnisch JP, Ranft J (1989) PgE1 bei seniler Maculadegeneration. Klin Monatsbl Augenheilkd 194:282–284PubMedGoogle Scholar
  19. 19.
    Henkind P, Gartner S (1983) The relationship between retinal pigment epithelium and the choriocapillaris. Trans Ophthalmol Soc UK 103:444–447PubMedGoogle Scholar
  20. 20.
    Heriot WJ, Henkind P (1984) Choroidal neovascularization can digest Bruch's membrane. Ophthalmology 91:1603–1608PubMedGoogle Scholar
  21. 21.
    Hogan MJ (1967) Bruch's membrane and disease of the macula. Role of elastic tissue and collagen. Trans Ophthalmol Soc UK 87:113–161PubMedGoogle Scholar
  22. 22.
    Kenney MW, Meakin M (1983) Methods for removal of leukocytes and platelets prior to study of erythrocyte deformability. Clin Hemorheol 3:191–200Google Scholar
  23. 23.
    Kiesewetter H, Radtke H (1982) Das Mini-Erythrozyten-Agregometer: Ein neues Gerät zur schnellen Quantifizierung des Ausmasses der Erythrozytenaggregation. Biomed Tech (Berlin) 27:209Google Scholar
  24. 24.
    Kornzweig AL (1977) Changes in the choriocapillaris associated with senile macular degeneration. Ann Ophthalmol 11:1197–1201Google Scholar
  25. 25.
    MacCumber MW, Connor TB, Hayashi H, Krause WG, Glaser BM (1988) Transforming growth factor-beta (TGF-b) modulates vascular endothelial cell protease activity: role in new blood vessel invasion. Invest Ophthalmol Vis Sci [Suppl] 29:246Google Scholar
  26. 26.
    Marshall J (1987) The ageing retina: physiology or pathology. Eye 1:282–295PubMedGoogle Scholar
  27. 27.
    Mussler K, Teitel P (1979) The filtrometer. An automatic electronic instrument for investigating the flow behavior of red blood cells at low shear stresses. Biorheology 16:506Google Scholar
  28. 28.
    Pauleikhoff D, Marshall J, Bird AC (1989) Histochemical and morphological correlation of aging changes in Bruch's membrane. Invest Ophthalmol Vis Sci [Suppl] 30:153Google Scholar
  29. 29.
    Peter G (1977) Klinische Chemie. Rathgeber, MünchenGoogle Scholar
  30. 30.
    Prünte C, Niesel P (1988) Quantification of choroidal blood flow parameters using indocyanine green video-fluorescence angiography and statistical picture analysis. Graefe's Arch Clin Exp Ophthalmol 226:55–58Google Scholar
  31. 31.
    Ryan S (1985) Subretinal neovascularization. In: Ryan SJ, Dawson AK, Little HL (eds) Retinal diseases. Grune and Stratton, London, pp 95–99Google Scholar
  32. 32.
    Scheffler A, Rieger H (1984) Die Erythrozytenfiltration. Eine klinisch relevante Methode zur Charakterisierung der Erythrozytenfließfähigkeit im Rahmen der arteriellen Verschlußkrankheit? Vasa [Suppl] 12:81–98Google Scholar
  33. 33.
    Schmid-Schönbein H, Driessen GK (1987) Hämodilution als antithixotrope Therapie bei Verschlußkrankheiten der Retina: Begründung rheologischer Maßnahmen bei dekompensierter Obliteration der großen Gefäße. In: Stodtmeister R, Christ T, Pillunat LE, Ulrich WD (eds) Okuläre Durchblutungsstörungen, Enke, Stuttgart, pp 108–122Google Scholar
  34. 34.
    Schmid-Schonbein H, Gallasch G (1976) Red cell aggregation in blood flow, II. Effect on apparent viscosity of blood. Klin Wochenschr 54:159–167PubMedGoogle Scholar
  35. 35.
    Schmid-Schönbein H, Leschke M (1984) Wiederverwendbare Präzisionssiebe für die Erythrozyten-Filtrometrie: Das MyNi-Pore-System. Hämorheologische Meßmethoden, Verhandlungsbericht 3. Kongreß der Deutschen Gesellschaft für Klinische Hämorheologie. Münchener Wissenschaftliche Publikationen, Homburg. pp 92–96Google Scholar
  36. 36.
    Schmid-Schönbein H, Rieger H (1977) Pathological red cell aggregation. Bibl Anat 16:484–489PubMedGoogle Scholar
  37. 37.
    Schmid-Schönbein H, Teitel P (1984) The Aachen hemorheology test profile: a proposal for the documentation of hemorheological data in clinical medicine. Biorheology [Suppl I]:49–62Google Scholar
  38. 38.
    Seiffge D, Behr S (1986) Passage time of red blood cells in the SER; their distribution and influences of various extrinsic and intrinsic factors. Clin Hemorheol 6:151–164Google Scholar
  39. 39.
    Stark H (1985) Langzeitbehandlung der senilen Makuladegeneration mit Cosaldon A+E. Klin Monatsbl Augenheilkd 187:296–302PubMedGoogle Scholar
  40. 40.
    Stern WH, Ernest JT (1974) Microsphere occlusion of the choriocapillaris in rhesus monkeys. Am J Ophthalmol 78:438–448PubMedGoogle Scholar
  41. 41.
    Stuart J (1985) Erythrocyte rheology. J Clin Pathol 38:965–977PubMedGoogle Scholar
  42. 42.
    Thuranszky K (1957) Der Blutkreislauf der Netzhaut. Verlag der ungarischen Akademie der Wissenschaften, Budapest, pp 71–84Google Scholar
  43. 43.
    Torczynski E, Tso MOM (1976) The architecture of the choriocapillaris at the posterior pole. Am J Ophthalmol 81:428–440PubMedGoogle Scholar
  44. 44.
    Torczynski E (1986) Choroid and suprachoroid. In: Duane TD, Jaeger EA (eds) Biomedical foundations of ophthalmology, vol 1. Harper and Row, Philadelphia, pp 1–33Google Scholar
  45. 45.
    Tso MOM (1985) Pathogenetic factors of aging macular degeneration. Ophthalmology 92:628–635PubMedGoogle Scholar
  46. 46.
    Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31:291–306PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Werner Inhoffen
    • 1
  • Zita Nüßgens
    • 1
  1. 1.Universitäts-AugenklinikBonnGermany

Personalised recommendations