On the dynamics of phase transitions

  • T. Matolcsi
Original Papers


The dynamics of phase transitions is described in ordinary thermodynamics i.e. the bodies are considered to be homogeneous. Stability properties of phase transitions are investigated by Lyapunov's method.

Mathematics Subject Classification (1991)

80A97 80A22 


Ordinary thermodynamics processes phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.W. Cahn and J.E. Hilliard,Acta Metall. 19 (1971), 151–161.Google Scholar
  2. [2]
    J. Carr, M.E. Gurtin and M. Slemrod,Arch. Rat. Mech. Anal. 86 (1984), 1984.Google Scholar
  3. [3]
    S.W. Koch, Dynamics of First-Order Phase transitions in Equilibrium and Nonequilibrium Systems,Lecture Notes in Physics, 207, Springer, Berlin 1984.Google Scholar
  4. [4]
    R. Hagan and J. Serrin, Dynamic Changes in a van der Waals Fluid,New Perspectives in Thermodynamics, Ed. J. Serrin, Springer, Berlin 1986 241–260.Google Scholar
  5. [5]
    H.W. Alt and I. Pawlow,Physica D 59 (1992), 389–416.Google Scholar
  6. [6]
    M.E. Gurtin,Arch. Rat. Mech. Anal. 123 (1993), 306–333.Google Scholar
  7. [7]
    M. Brokate, N. Kenmochi, I. Müller and J.E. Rodriguez,Phase transitions and Hysteresis, Springer, Berlin 1994.Google Scholar
  8. [8]
    G.R. Gavalas,Nonlinear Differential Equations of Chemically Reacting Systems, Springer, Berlin 1968.Google Scholar
  9. [9]
    M.J. Pilling,Reaction Kinetics, Clarendon Press, Oxford 1974.Google Scholar
  10. [10]
    C.G. Hammes,Principles of Chemical Kinetics, Academic Press, New York 1978.Google Scholar
  11. [11]
    P.Érdi and J.Tóth,Mathematical Models of Chemical Reactions, Princeton Univ. Press 1989.Google Scholar
  12. [12]
    L. Szili and J. Tóth,Phys. Rev. E 48 (1993), 183–186.Google Scholar
  13. [13]
    Nigel Goldenfeld,Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley, New York 1992, p. 29.Google Scholar
  14. [14]
    T. Matolcsi,ZAMP 47 (1996), 837–857.Google Scholar
  15. [15]
    H.B. Callen,Thermodynamics, John Wiley and Sons, New York 1960.Google Scholar
  16. [16]
    N. Boccara,Les principes de la thermodynamique classique, Press Univ. de France, Paris 1968, p. 60.Google Scholar
  17. [17]
    J. Tullieu,La thermodynamique, Press Univ. de France, Paris 1990 p. 71.Google Scholar
  18. [18]
    T. Matolcsi,Phys. Ess. 5 (1992), 320–327.Google Scholar
  19. [19]
    T. Matolcsi,Phys. Ess. 6 (1993), 158–165.Google Scholar
  20. [20]
    T. Matolcsi,Phys. Ess. 8 (1995), 15–19.Google Scholar
  21. [21]
    S.W. Koch,Dynamics of First-Order Phase Transitions in Equilibrium and Non-equilibrium Systems, LNPh.207, Springer, Berlin 1984.Google Scholar
  22. [22]
    V.P. Skripov,J.Non-equ.Therm. 17 (1992), 193–236.Google Scholar
  23. [23]
    N. Rouche, P. Hubets and M. Laloy,Stability Theory by Lyapunov's Direct Method, Springer, Berlin 1977.Google Scholar
  24. [24]
    T. Matolcsi,PU.M.A. Ser.B 3 (1992), 37–43.Google Scholar
  25. [25]
    J.G. Malkin,Theorie der Stabilität einer Bewegung, Akademie-Verlag, Berlin 1959.Google Scholar
  26. [26]
    P.R. Halmos,Finite Dimensional Vector Spaces, Springer, Berlin 1974.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • T. Matolcsi
    • 1
  1. 1.Department of Applied AnalysisEötvös Loránd UniversityHungary

Personalised recommendations