Skip to main content
Log in

Electrical conductivity of shock compressed condensed argon at pressures from 20 to 70 GPa

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. M. Ross, W. Nellis, and A. Mitchell, “Shock-wave compression of liquid argon to 910 kbar,” Chem. Phys. Lett.,68, No. 2, 3 (1979).

    Google Scholar 

  2. N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials, Clarendon Press, Oxford (1979).

    Google Scholar 

  3. L. A. Gatilov and L. V. Kuleshova, “Measurement of high electrical conductivity in shockcompressed dielectrics,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1989).

  4. L. V. Al'tshuler, M. N. Pavlovskii, et al., “Study of alkali metal halogenides at high pressures and shock compression temperatures,” Fiz. Tverd. Tela,5, No. 1 (1963).

  5. M. Van Thiel and B. J. Alder, “Shock compression of argon,” J. Chem. Phys.,44, 1056 (1966).

    Google Scholar 

  6. W. I. Nellis and A. C. Mitchell, “Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar),” J. Chem. Phys.,73, No. 12 (1980).

  7. N. G. Kalashnikov, L. V. Kuleshova, and M. N. Pavlovskii, “Shock compression of polytetrafluorethylene to pressures of 1.7 Mbar,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1972).

  8. M. N. Pavlovskii, “Shock compressibility of six high hardness substances,” Fiz. Tverd. Tela,12, No. 7 (1970).

  9. L. V. Kuleshova and M. N. Pavlovskii, “Dynamic compressibility, electrical conductivity, and speed of sound behind a shock-wave front in Caprolon,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1977).

  10. M. Ross, “Shock compression of argon and xenon. IV. Conversion of xenon to a metallike state,” Phys. Rev.,171, No. 3, 777 (1968).

    Google Scholar 

  11. L. A. Gatilov and L. V. Kuleshova, “Electrical conductivity of cesium iodide behind a shock-wave front at pressures to 100 GPa,” Fiz. Tverd. Tela,23, No. 9 (1981).

  12. M. Ross, “The repulsive forces in dense argon,” J. Chem. Phys.,73, No. 9 (1980).

  13. A. R. Regel' and A. A. Andreev, “Liquid semiconductors,” in: Problems of Contemporary Physics [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  14. V. Yu. Klimenko and A. N. Dremin, “Structural relaxation in a shock-wave front in liquid,” in: Detonation. Materials of the II All-Union Conference on Detonation [in Russian], 2nd ed., Chernogolovka (1981).

  15. Ya. I. Frenkel', Kinetic Theory of Liquids, Plenum Publ. (1969).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 99–102, January–February, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatilov, L.A., Glukhodedov, V.D., Grigor'ev, F.V. et al. Electrical conductivity of shock compressed condensed argon at pressures from 20 to 70 GPa. J Appl Mech Tech Phys 26, 88–91 (1985). https://doi.org/10.1007/BF00919630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00919630

Keywords

Navigation