Locally three-dimensional laminar flows

  • V. V. Bogolepov
  • I. I. Lipatov
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Laminar Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Bogolepov and V. Ya. Neiland, “Supersonic, viscous flow past small roughness on the surface of a body,” Tr. Tsentralnyi Aero Gidrodin. Inst.,1363 (1974).Google Scholar
  2. 2.
    V. V. Bogolepov and V. Ya. Neiland, “Studies on local disturbances in viscous supersonic flows,” in: Problems in Aerodynamics [in Russian], Nauka, Moscow (1975).Google Scholar
  3. 3.
    A. V. Zubtsov, “Influence of single roughnes on boundary layer flow,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,2, No. 1 (1971).Google Scholar
  4. 4.
    F. T. Smith, “Laminar flows over a small hump on a flat plate,” J. Fluid Mech.,57, 4 (1973).Google Scholar
  5. 5.
    V. V. Bogolepov, “Computation of supersonic boundary layer interaction with a thin obstacle,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,5, No. 6 (1974).Google Scholar
  6. 6.
    V. V. Bogolepov, “Flow past small cylindrical hump on a flat plate in supersonic viscous flow,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,6, No. 2 (1975).Google Scholar
  7. 7.
    D. O. Lyzhin, “Flow past a smooth hump by a supersonic viscous fluid with free interaction,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,7, No. 4 (1976).Google Scholar
  8. 8.
    A. V. Kazakov, “Numerical study of flow past small roughness on flat plate in supersonic flow,” Tr. Tsentral'nyi Aero Gidrodin. Inst.,1910 (1978).Google Scholar
  9. 9.
    A. V. Kazakov, “Computation of flow past a small cavity and a hump on a flat plate in a supersonic viscous flow,” Tr. Tsentral'nyi Aero Gidrodin. Inst.,1910 (1978).Google Scholar
  10. 10.
    I. I. Lipatov, “Three-dimensional flow past a small roughness in laminar boundary layer,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,11, No. 2 (1980).Google Scholar
  11. 11.
    F. T. Smith, R. I. Sykes, and P. W. M. Brighton, “A two-dimensional boundary layer encountering a three-dimensional hump,” J. Fluid Mech.,83, 1 (1977).Google Scholar
  12. 12.
    R. I. Sykes, “Stratification effects in boundary-layer flow over hills,” Proc. R. Soc. London, A 361, N 1705 (1978).Google Scholar
  13. 13.
    I. I. Lipatov, “Flow past locally three-dimensional roughness at the bottom of laminar boundary layer with weak interaction in hypersonic flow,” Tr. Tsentral'nyi Aero Gidrodin. Inst.,2079 (1980).Google Scholar
  14. 14.
    P. J. Mason and R. I. Sykes, “Three-dimensional numerical integrations of the Navier — Stokes equations for flow over surface mounted obstacles,” J. Fluid Mech.,91, 3 (1979).Google Scholar
  15. 15.
    F. T. Smith, “A three-dimensional boundary-layer separation,” J. Fluid Mech.,99, 1 (1980).Google Scholar
  16. 16.
    R. I. Sykes, “On three-dimensional boundary layer flow over surface irregularities,” Proc. R. Soc. London, A 373, N 1754 (1980).Google Scholar
  17. 17.
    Wang, “On the determination for three-dimensional boundary layer equations,” J. Fluid Mech.,48, 2 (1971).Google Scholar
  18. 18.
    M. Abramovits and I. Stigan, Handbook on Special Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  19. 19.
    K. Stewartson and P. G. Williams, “Self-induced separation,” Proc. R. Soc. London, A 312, N 1509 (1969).Google Scholar
  20. 20.
    A. A. Kovalenko and V. Ya. Neiland, “Strong interaction in boundary layer with hypersonic flow with local disturbances in boundary conditions,” Uch. Zap. Tsentral'nyi Aero Gidrodin. Inst.,6, No. 2 (1975).Google Scholar
  21. 21.
    S. G. Rubin and B. Grossman, “Viscous flow along a corner: numerical solution of the corner layer equations,” Q. Appl. Math.,29, No. 2 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. V. Bogolepov
    • 1
  • I. I. Lipatov
    • 1
  1. 1.Moscow

Personalised recommendations