Skip to main content
Log in

The influence of stimulus parameters on the visual field indices by automated projection perimetry

  • Clinical Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The various stimulus parameters offered by two standard automated projection perimeters [Humphrey Field Analyser 630 (HFA) and Octopus 2011, namely, stimulus size and location and the interaction of adaptation level and stimulus duration, were compared in a sample of 20 patients attending a glaucoma clinic using the visual field indices mean defect (MD), loss variance (LV), short-term fluctuation (SF) and corrected loss variance (CLV). LV and SF were greater with Octopus program 32 compared with Octopus program G1 (P < 0.02). No difference in the indices was found between stimulus sizes I and III for HFA program 30-2. MD was greater for program 30-2 compared with program 32 (P < 0.002) when expressed in terms of log (L/ΔL) whereas LV (P < 0.02) and SF (P < 0.02) were greater for program 32. All differences were considered to be negligible in the clinical sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atchison DA (1987) Effect of defocus on visual field measurement. Ophthalmic Physiol Opt 7:259–265

    Google Scholar 

  2. Aulhorn E, Harms H (1972) Visual perimetry. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Bebie H (1985) Computerised techniques of visual field analysis. In: Drance SM, Anderson D (eds) Automatic perimetry in glaucoma. A practical guide. Grune and Stratton, Orlando

    Google Scholar 

  4. Bebie H, Fankhauser F, Spahr J (1976) Static perimetry: accuracy & fluctuations. Acta Ophthalmol 54:339–348

    Google Scholar 

  5. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Google Scholar 

  6. Brenton RS, Argus WA (1987) Fluctuations on the Humphrey and Octopus perimeters. Invest Ophthalmol Vis Sci 28:767–771

    Google Scholar 

  7. Brenton RS, Phelps CD (1986) The normal visual field on the Humphrey Field Analyser. Ophthalmologica 193:56–74

    Google Scholar 

  8. Caprioli J, Sears M (1987) Patterns of early visual field loss in glaucoma. Doc Ophthalmol Proc Ser 49:307–316

    Google Scholar 

  9. Choplin NT, Sherwood MB, Spaeth GL (1990) The effect of stimulus size on the measured threshold values in automated perimetry. Ophthalmology 97:371–374

    Google Scholar 

  10. Crosswell HH, Stewart WC, Cascairo MA, Hunt HH (1991) The effect of background intensity on the components of fluctuation as determined by threshold-related automated perimetry. Graefe's Arch Clin Exp Ophthalmol 229:119–122

    Google Scholar 

  11. Dannheim F (1987) First experiences with the new Octopus G1 program in chronic simple glaucoma. Doc Ophthalmol Proc Ser 49:321–328

    Google Scholar 

  12. Dannheim F, Drance SM (1974) Psychovisual disturbances in glaucoma. A study of temporal and spatial summation. Arch Ophthalmol 91:463–468

    Google Scholar 

  13. Fankhauser F (1979) Problems related to the design of automatic perimeters. Doc Ophthalmol 47:89–138

    Google Scholar 

  14. Fankhauser F, Bebie H (1979) Threshold fluctuations, interpolations and spatial resolution in perimetry. Doc Ophthalmol Proc Ser 19:295–309

    Google Scholar 

  15. Fankhauser F, Schmidt T (1958) Die Untersuchung der räumlichen Summation mit stehender und bewegter Reizmarke nach der Methode der quantitativen Lichtsinnperimetrie. Ophthalmologica 135:660–666

    Google Scholar 

  16. Fankhauser F, Schmidt T (1960) Die optimalen Bedingungen für die Untersuchung der rümlichen Summation mit stehender Reizmarke nach der quantitativen Lichtsinnperimetrie. Ophthalmologica 139:409–423

    Google Scholar 

  17. Fankhauser F, Bebie H, Flammer J (1988) Threshold fluctuations in the Humphrey Field Analyser and in the Octopus automated perimeter. Invest Ophthalmol Vis Sci 29:1466

    Google Scholar 

  18. Flammer J (1986) The concept of visual field indices. Graefe's Arch Clin Exp Ophthalmol 224:389–392

    Google Scholar 

  19. Gilpin LB, Stewart WC, Hunt HH, Broom CD (1990) Threshold variability using different Goldmann stimulus sizes. Acta Ophthalmol 68:674–676

    Google Scholar 

  20. Gloor B, Gloor E (1986) Die Erfassbarkeit glaukomatoser Gesichtsfeldausfälle mit dem automatischen Perimeter Oktopus. Ein Vergleich zwischen Programm G1 und den Programmen 31 und 32 und deren Kombination. Klin Monatsbl Augenheilkd 188:33–38

    Google Scholar 

  21. Goldstick BI, Weinreb RN (1987) The effect of refractive error on Octopus global analysis program G1. Invest Ophthalmol Vis Sci [Suppl] 28:270

    Google Scholar 

  22. Grainer E, Kontic D, Krieglstein GK (1981) Die computerperimetrische Darstellung glaukomatoser Gesichtsfelddefekte in Abhängigkeit von der Stimulusgrosse. Ophthalmologica 183:162–167

    Google Scholar 

  23. Greve EL (1973) Single and multiple stimulus static perimetry in glaucoma; the two phases of perimetry. Doc Ophthalmol 36:1–355

    Google Scholar 

  24. Greve EL (1979) Visual fields, glaucoma and cataract. Doc Ophthalmol Proc Ser 22:79–88

    Google Scholar 

  25. Heijl A (1977) Time changes of contrast thresholds during automatic perimetry. Acta Ophthalmol 55:696–708

    Google Scholar 

  26. Heijl A, Drance SM (1983) Changes in differential threshold in patients with glaucoma during prolonged perimetry. Br J Ophthalmo; 67:512–516

    Google Scholar 

  27. Heiji A, Lindgren G, Olsson J (1987) A package for the statistical analysis of visual field. Doc Ophthalmol Proc Ser 49:153–168

    Google Scholar 

  28. Heuer DK, Anderson DR, Feuer WJ, Gressel MG (1987) The influence of refraction accuracy on automated perimetric threshold measurements. Ophthalmology 94:1550–1553

    Google Scholar 

  29. Heuer DK, Anderson DR, Feuer WJ, Knighton RW, Gressel MG, Fantes FE (1987) The influence of simulated media opacities on threshold measurements. Doc Ophthalmol Proc Ser 49:15–22

    Google Scholar 

  30. Heuer DK, Anderson DR, Feuer WJ, Knighton RW, Gressel MG (1988) The influence of simulated light scattering on automated perimetric threshold measurements. Arch Ophthalmol 106:1247–1251

    Google Scholar 

  31. Heuer DK, Anderson DR, Feuer WJ, Gressel MG (1989) The influence of decreased retinal illumination on automated perimetric threshold measurements. Am J Ophthalmol 108:643–650

    Google Scholar 

  32. Hoskins HD, Migliazzo C (1985) Development of a visual field screening test using a Humphrey visual field Analyser. Doc Ophthalmol Proc Ser 42:85–90

    Google Scholar 

  33. Humphrey Owner's Manual. Allergan Humphrey. San Leandro

  34. Keltner JL (1979) Comments on automated perimetry papers. Ophthalmology 86:1317–1319

    Google Scholar 

  35. Keltner JL, Johnson CA (1986) Is the ideal automated perimeter available? Editorial. Arch Ophthalmol 104:347–349

    Google Scholar 

  36. King D, Drance SM, Douglas GR, Wijsman K (1986) The detection of paracentral scotomas with varying grids in computed perimetry. Arch Ophthalmol 104:524–525

    Google Scholar 

  37. Langerhorst CT (1988) Automated perimetry in glaucoma. Fluctuation behaviour and general and local reduction of sensitivity. Kugler and Ghedini, Amsterdam

    Google Scholar 

  38. Lewis RA, Johnson CA, Keltner JL, Labermeier PK (1986) Variability of quantitative automated perimetry in normal observers. Ophthalmology 93:878–881

    Google Scholar 

  39. Lustgarten JS, Marx MS, Podos SM, Bodis-Wollner I, Campeas D, Serle JB (1990) Contrast sensitivity and computerized perimetry in early detection of glaucomatous change. Clin Vis Sci 5:407–413

    Google Scholar 

  40. Mills RP, Hopp RH, Drance SM (1986) Comparison of quantitative testing with the Octopus, Humphrey and Tilbingen perimeters. Am J Ophthalmol 102:496–504

    Google Scholar 

  41. Mogil LG, Abramovsky-Kaplan I, Rosenthal JS, Podos SM (1985) Comparison of Goldmann, Humphrey and Octopus perimeters in glaucoma. Invest Ophthalmol Vis Sci [Suppl] 26:225

    Google Scholar 

  42. Radius R (1978) Perimetry in cataract patients. Arch Ophthalmol 96:1574–1579

    Google Scholar 

  43. Rutihauser C, Flammer J, Haas A (1989) The distribution of normal values in automated perimetry. Graefe's Arch Clin Exp Ophthalmol 227:513–517

    Google Scholar 

  44. Starita RJ, Fellman RL, Lynn JR (1987) Static automated perimetry: background luminance and global visual field indices in the quantification of normal, suspect and glaucomatous visual fields. Invest Ophthalmol Vis Sci [Suppl] 28:269

    Google Scholar 

  45. Sues FE, Verriest G (1987) Inter- and intra-individual sensitivity variations with manual and automated static perimeters. Ophthalmologica 195:209–214

    Google Scholar 

  46. Van den Berg TJTP, Van Spronson R, Van Veenendaal WG, Bakker D (1985) Psychophysics of intensity discrimination in relation to defect volume examination on the Scoperimeter. Doc Ophthalmol Proc Ser 42:147–151

    Google Scholar 

  47. Weber J, Kosel J (1986) Glaukomperimetrie — die Optimierung von Prüfpunktrastern mit einem Informationsindex. Klin Monatsbl Augenheilkd 189:110–117

    Google Scholar 

  48. Weinreb RN, Perlman JP (1986) The effects of refractive correction on automated perimetric thresholds. Am J Ophthalmol 101:706–709

    Google Scholar 

  49. Werner EB, Adelson AA, Krupin TP (1988) Effect of patient experience on the results of automated perimetry in clinically stable glaucoma patients. Ophthalmology 95:764–767

    Google Scholar 

  50. Werner EB, Krupin T, Adelson A, Feitl ME (1990) Effect of patient experience on the results of automated perimetry in glaucoma suspect patients. Ophthalmology 97:44–48

    Google Scholar 

  51. Wild JM, Wood JM, Flanagan JG, Good PA, Crews SJ (1986) The interpretation of the differential light threshold in the central visual field. Doc Ophthalmol 62:191–202

    Google Scholar 

  52. Wild JM, Wood JM, Flanagan JG (1986) Spatial summation and the cortical representation of perimetric profiles. Ophthalmologica 195:88–96

    Google Scholar 

  53. Wild JM, Dengler-Harles M, Searle AET, O'Neill EC, Crews SJ (1989) The influence of the learning effect on automated perimetry in patients with suspected glaucoma. Acta Ophthalmol 67:537–545

    Google Scholar 

  54. Wilensky JT, Mermelstein JR, Siegel HG (1986) The use of different sized stimuli on automated perimetry. Am J Ophthalmol 101:710–713

    Google Scholar 

  55. Wood JM, Wild JM, Drasdo N, Crews SJ (1986) Perimetric profiles and cortical representation. Ophthalmic Res 18:301–308

    Google Scholar 

  56. Wood JM, Wild JM, Good PA, Crews SJ (1986) Stimulus investigative range in the perimetry of retinitis pigmentosa: some preliminary findings. Doc Ophthalmol 63:287–302

    Google Scholar 

  57. Zalta A (1991) Use of a central 10° field and size V stimulus to evaluate and monitor small central islands of vision in end stage glaucoma. Br J Ophthalmol 75:151–154

    Google Scholar 

  58. Zalta A, Burchfield JC (1990) Detecting early glaucomatous field defects with the size I stimulus and Statpac. Br J Ophthalmol 74: 289–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dengler-Harles, M., Wild, J.M., Cole, M.D. et al. The influence of stimulus parameters on the visual field indices by automated projection perimetry. Graefe's Arch Clin Exp Ophthalmol 231, 337–343 (1993). https://doi.org/10.1007/BF00919030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00919030

Keywords

Navigation