Inflammation

, Volume 16, Issue 2, pp 147–158 | Cite as

Modulation of neutrophil functions by activated platelet release factors

  • Susanna Spisani
  • Anna Lisa Giuliani
  • Teresa Cavalletti
  • Margherita Zaccarini
  • Laura Milani
  • Riccardo Gavioli
  • Serena Traniello
Original Articles

Abstract

Platelets activated with physiological agonists, such as thrombin, ADP, or collagen, released products able to modulate neutrophil functions. In particular, platelet supernatant contained an inhibitor of superoxide anion generation induced by phorbol ester and a chemotactic factor for human neutrophils. The proteolytic digestion of platelet supernatant completely abrogated chemotactic activity without interfering with the inhibitory effect, indicating the presence of different molecules involved in the modulation of different neutrophil functions. This was further confirmed by the pretreatment of platelets with aromatic benzamidine which abolished chemotactic activity, but did not affect superoxide inhibition of neutrophils. This report provides evidence for interaction of platelets and inflammatory cells, suggesting that platelets are able to induce accumulation of neutrophils and control their respiratory burst, which also has a critical role in tissue damaging in inflammation.

Keywords

Superoxide Thrombin Phorbol Human Neutrophil Phorbol Ester 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klebanoff, S. J., andR. A. Clark. 1987. The neutrophil: Function and Clinical Disorders. Elsevier/North Holland Press, Amsterdam.Google Scholar
  2. 2.
    Gallin, J. I., I. M. Goldstein, andR. Snyderman. 1988. Inflammation. Basic Principles and Clinical Correlates. Raven Press, New York.Google Scholar
  3. 3.
    Gavioli, R., S. Spisani, A. L. Giuliani, andS. Traniello. 1987. Protein kinase C mediates human neutrophil cytotoxn city.Biochem. Biophys. Res. Commun. 148:1290–1294.Google Scholar
  4. 4.
    Klebanoff, S. J. 1982. Oxygen-dependent cytotoxic mechanism of phagocytes.In Advances in Host Defence Mechanisms, Vol. 1. J. I. Gallin and A. S. Fauci, editors. Raven Press, New York. 111–162.Google Scholar
  5. 5.
    Spitznagel, J. K., andW. M. Shafer. 1985. Neutrophil killing of bacteria by oxygen-independent mechanisms: A historical summary.Rev. Infect. Dis. 7:398–403.Google Scholar
  6. 6.
    Sacks, T., C. F. Maldow, P. R. Craddock, T. K. Bowers, andH. S. Jacob. 1978. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage.J. Clin. Invest. 61:1161–1167.Google Scholar
  7. 7.
    Moon, D. G., H. van Der Zee, L. K. Weston, P. W. Gudewicz, J. W. Fenton II, andJ. E. Kaplan. 1990. Platelet modulation of neutrophil superoxide anion production.Thromb. Haemost. 63:91–96.Google Scholar
  8. 8.
    Dallegri, F., A. Ballestrero, L. Ottonello, andF. Patrone. 1989. Platelets as inhibitory cells in neutrophil-medtated cytolysis.J. Lab. Clin. Med. 114:502–504.Google Scholar
  9. 9.
    Dallegri, F., A. Ballestrero, L. Ottonello, andF. Patrone. 1989. Platelets as scavengers of neutrophil-derived oxid ants: A possible defence mechanism at sites of vascular injury.Thromb. Haemost. 61:415–418.Google Scholar
  10. 10.
    Wilson, E., S. M. Laster, L. R. Gooding, andJ. D. Lambeth. 1987. Platelet-derived growth factor stimulates phagocytosis and blocks agonist-induced activation of the neutrophil oxidative burst: A possible cellula:mechanism to protect against oxygen radical damage.Proc. Natl. Acad. Sci. U.S.A. 84:2213–2211.Google Scholar
  11. 11.
    Ferroni, R., E. Menegatti, M. Guarneri, U. Taddeo, M. Bolognesi, P. Ascenzi, A. Bertolini, andG. Amiconi. 1986. Aromatic tetra-amidines: Antiproteolytic and antiesterolytic activities towards serine proteinases involved in blood coagulation and clot lysis.Il Farmaco 41:464–470.Google Scholar
  12. 12.
    Milani, L., R. Ferroni, M. Zaccarini, andS. Traniello. 1989. Aromatic tetra-amidines with antiproteolytic activity inhibit platelet aggregation and secretion.Thromb. Res. 56:417–424.Google Scholar
  13. 13.
    Aoki, N., K. Naito, andN. Yoshida. 1978. Inhibition of platelet aggregation by protease inhibitor. Possible involvement of proteases in platelet aggregation.Blood 52:1–12.Google Scholar
  14. 14.
    Wilkinson, P. C. 1974. Outline a method for measuring chemotaxis.In Chemotaxis and Inflammation. P. C. Wilkinson (editor). Churchill Livingstone, Edinburgh.Google Scholar
  15. 15.
    Traniello, S., S. Spisani, R. Gavioli, L. Dovigo, O. R. Baricordi, A. Sensi, andG. Damiani. 1986. Deficiency of neutrophil membrane antigen detected by monoclonal antibody in rheumatoid arthritis.FEBS Lett. 204:449.Google Scholar
  16. 16.
    Zigmond, S. H., andJ. G. Hirsch. 1973. Leukocyte locomotion and chemotaxis: New methods for evaluation and demonstration of a cell derived chemotactic factor.J. Exp. Med. 137:387–410.Google Scholar
  17. 17.
    Spisani, S., T. Cavalletti, R. Gavioli, A. Scatturin, G. Vertuani, andS. Traniello. 1986. Response of human neutrophils to formyl-peptide modified at the terminal amino and carboxyl groups.Inflammiation 10:363–369.Google Scholar
  18. 18.
    Spisani, S., R. Gavioli, A. L. Giuliani, T. Cavalletti, M. Makastoni, G. Balboni, S. Salvadori, R. Tomatis, andS. Traniello. 1990. Chemotactic response of human monocytes to pentapeptide analog derived from immunodeficiency virus protein gp 120.Inflammation 14:55–60.Google Scholar
  19. 19.
    Spisani, S., R. Gavioli, P. Chiozzi, F. Lanza, F. Bortolotti, andS. Traniello. 1989. Lymphocytes treated with natural alpha-interferon produce a chemotatcic factor for human neutrophils.Cell Biol. Int. Rep. 13:163–169.Google Scholar
  20. 20.
    Traniello, S., P. Mantovani, R. Gavioli, R. Baricordi, A. Sensi, G. Damiani, andS. Spisani. 1988. Monoclonal antibodies: Modulation of cellular activities and identification of heterogeneity of functional response in human neutrophils.J. Clin. Lab. Immunol. 26:135–140.Google Scholar
  21. 21.
    Spisani, S., C. Marangoni, L. Dovigo, andS. Traniello. 1984. Effect of antiinflammatory agents on neutrophil superoxide production in rheumatoid arthritis.Inflammation 8:45–52.Google Scholar
  22. 22.
    Wong, S., J. R. Gamble, M. P. Skinner, C. M. Lucas, M. C. Berndt, andM. A. Vadas. 1991. Adhesion protein GMP 140 inhibits superoxide anion release by human neutrophils.Proc. Natl. Acad. Sci. U.S.A. 88:2397–2401.Google Scholar
  23. 23.
    Spisani, S., andS. Traniello. 1979. Effect of mediators of inflammation on human neutrophil motility.Adv. Inflamm. Res. 1:237–245.Google Scholar
  24. 24.
    Ward, P. A., T. W. Cunningham, K. K. McCulloch, andK. J. Johnson. 1988. Regulatory effects of adenosine and adenine nucleotides on oxygen radical responses of neutrophils.Lab. Invest. 58:438–447.Google Scholar
  25. 25.
    Cronstein, B. N., L. Daguma, D. Nichols, A. J. Htchinson, andM. Williams. 1990. The adenosine/neutrophil paradox resolved: Human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 · generation, respectively.J. Clin. Invest. 85:1150–1157.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Susanna Spisani
    • 1
  • Anna Lisa Giuliani
    • 1
  • Teresa Cavalletti
    • 1
  • Margherita Zaccarini
    • 1
  • Laura Milani
    • 1
  • Riccardo Gavioli
    • 1
  • Serena Traniello
    • 1
  1. 1.Instituto di Chimica BiologicaUniversità di FerraraFerraraItaly

Personalised recommendations