Stereoscopic cooperation between the fovea of one eye and the periphery of the other eye at large disparities Implications for anomalous retinal correspondence in strabismus

  • Bernhard Dengler
  • Guntram Kommerell
Clinical investigations


In normal human observers we searched for the largest amount of visual disparity that can still provide depth information; we compared (1) crossed and uncrossed disparities and (2) symmetrical and asymmetrical locations of disparate stimuli. A pair of 3° discs projected for 100 ms served as targets. Symmetrical stimuli were projected on temporal or nasal retinal loci in both eyes; asymmetrical stimuli were projected on the fovea of one eye and on the nasal or temporal periphery of the other eye. Thresholds were determined using a two-alternative forced choice procedure. Subjects had to distinguish binocular disparate images from monocular double images of identical angular separation. Among six subjects, crossed disparities were recognized by one up to 6°, by three up to 9°, by one up to 18°, and by one up to 21°. Uncrossed disparities were recognized by two at 3°, by two up to 6° and by two up to 9°. Hence, crossed disparities could be recognized up to higher angles than uncrossed. No consistent difference was found between symmetrical and asymmetrical stimuli. Stimuli with crossed disparity appeared smaller and with uncrossed disparity larger than monocular stimuli of the same objective size, suggesting that the size-constancy mechanism operates when disparity stimuli are presented as briefly as 100 ms, i.e., without simultaneous vergence eye movements. We speculate that the far-reaching interocular connections demonstrated in normal subjects might also be utilized in the case of strabismus: these interocular connections could form the basis for anomalous retinal correspondence.


Strabismus Angular Separation Retinal Locus Forced Choice Procedure Double Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aulhorn E (1966) Phasendifferenz-Haploskopie. Klin Monatsbl Augenheilkd 148:540–544Google Scholar
  2. 2.
    Aulhorn E (1969) Erfahrungen mit der Phasendifferenzhaploskopie. Ber Deutsch Ophthalmol Ges 69:593–598Google Scholar
  3. 3.
    Bagolini B (1976) Sensorial anomalies in strabismus (suppression, anomalous correspondence, amblyopia). Doc Ophthalmol 41:1–22Google Scholar
  4. 4.
    Blakemore C (1970) The range and scope of binocular depth discrimination in man. J Physiol 211:599–622Google Scholar
  5. 5.
    Enoch J, Goldmann H, Sunga R (1969) The ability to distinguish which eye was stimulated by light. Invest Ophthalmol 8:317–331Google Scholar
  6. 6.
    Erkelens CJ (1987) Adaptation of ocular vergence to stimulation with large disparities. Exp Brain Res 66:507–516Google Scholar
  7. 7.
    Foley JM, Applebaum TH, Richards WA (1975) Stereopsis with large disparities: discrimination and depth magnitude. Vision Res 15:417–421Google Scholar
  8. 8.
    Friedburg D (1981) A new concept of anomalous correspondence. In: Mein J, Moore S (eds) Orthoptics, research and practice transactions. Fourth International Orthoptic Congress. Kimpton, London, pp 151–153Google Scholar
  9. 9.
    Harms H (1939) Ort und Wesen der Bildhemmung bei Schielenden. Graefe's Arch Ophthalmol 138:149–210Google Scholar
  10. 10.
    Herzau V (1980) Untersuchungen über das binokulare Gesichtsfeld Schielender. Doc Ophthalmol 49:221–284Google Scholar
  11. 11.
    Mackensen G (1959) Monoculare und binoculare statische Perimetrie zur Untersuchung der Hemmungsvorgänge beim Schielen. Graefe's Arch Ophthalmol 160:573–587Google Scholar
  12. 12.
    Mehdorn E (1982) Beidäugige und interhemisphärische Zusammenarbeit bei normalem Binokularsehen und bei Mikrostrabismus. Stereoperimetrische Untersuchungen. Habilitationsschrift, FreiburgGoogle Scholar
  13. 13.
    Mehdorn E (1989) Suppression scotomas in primary microstrabismus — a perimetric artefact. Doc Ophthalmol 71:1–18Google Scholar
  14. 14.
    Mitchell DE (1970) Properties of stimuli eliciting vergence eye movements and stereopsis. Vision Res 10:145–162Google Scholar
  15. 15.
    Ogle KN (1952) Disparity limits of stereopsis. Arch Ophthalmol (Chicago) 48:50–60Google Scholar
  16. 16.
    Ogle KN (1952) On the limits of stereoscopic vision. J Exp Psychol 44:253–259Google Scholar
  17. 17.
    Ogle KN (1962) Spacial localization according to direction. In: Davson H (ed) The Eye. Academic Press, New York LondonGoogle Scholar
  18. 18.
    Ogle KN (1962) The problem of the horopter. In: Davson H (ed) The Eye. Academic Press, New York LondonGoogle Scholar
  19. 19.
    Ono H, Barbeito R (1985) Utrocular discrimination is not sufficient for utrocular identification. Vision Res 25:289–299Google Scholar
  20. 20.
    Panum PL (1858) Physiologische Untersuchungen über das Sehen mit zwei Augen. Schwers'sche Buchhandlung, KielGoogle Scholar
  21. 21.
    Patterson R, Fox R (1984) The effect of testing method on stereoanomaly. Vision Res 24:403–408Google Scholar
  22. 22.
    Regan D, Erkelens CJ, Collewijn H (1986) Necessary conditions for the perception of motion in depth. Invest Ophthalmol Vis Sc 27:584–597Google Scholar
  23. 23.
    Richards W (1970) Stereopsis and stereoblindness. Exp Brain Res 10:410–414Google Scholar
  24. 24.
    Richards W (1971) Anomalous stereoscopic depth perception. J Opt Soc Am 61:410–414Google Scholar
  25. 25.
    Richards W, Foley JM (1971) Interhemispheric processing of binocular disparity. J Opt Soc Am 61:419–421Google Scholar
  26. 26.
    Richards W, Kaye MG (1974) Local versus global stereopsis: two mechanisms? Vision Res 14:1345–1347Google Scholar
  27. 27.
    Schor CM, Tyler CW (1981) Spatio-temporal properties of Panum's fusional area. Vision Res 21:683–692Google Scholar
  28. 28.
    Sireteanu R (1982) Binocular vision in strabismic humans with alternating fixation. Vision Res 22:889–896Google Scholar
  29. 29.
    Sireteanu R, Fronius M (1981) Naso-temporal asymmetries in human amblyopia: consequence of long-term interocular suppression. Vision Res 21:1055–1063Google Scholar
  30. 30.
    Sireteanu R, Fronius M, Singer W (1981) Binocular interaction in the peripheral visual field of humans with strabismic and anisometropic amblyopia. Vision Res 21:1065–1074Google Scholar
  31. 31.
    Tyler CW (1983) Sensory processing of binocular disparity. In: Schor CM, Ciuffreda KJ (eds) Vergence eye movements: basic and clinical aspects. Butterworths, BostonGoogle Scholar
  32. 32.
    Tyler CW, Julesz B (1980) On the depth of the cyclopean retina. Exp Brain Res 40:196–202Google Scholar
  33. 33.
    Westheimer G, Mitchell DE (1969) The sensory stimulus for disjunctive eye movement. Vision Res 9:749–755Google Scholar
  34. 34.
    Westheimer G, Tanzman IJ (1956) Qualitative depth localization with diplopic images. J Opt Soc Am 46:116–117Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Bernhard Dengler
    • 1
  • Guntram Kommerell
    • 1
  1. 1.Abteilung Neuroophthalmologie und SchielbehandlungUniversitäts-AugenklinikFreiburgGermany

Personalised recommendations