Laser scanning tomography and stereophotogrammetry in three-dimensional optic disc analysis

  • Reinhard O. W. Burk
  • Klaus Rohrschneider
  • Takenori Takamoto
  • Hans E. Völcker
  • Bernhard Schwartz
Clinical investigations


Laser scanning tomography (LST) and computed stereophotogrammetry (CSP) are sophisticated diagnostic tools for the three-dimensional analysis of optic nerve head topography. The two methods are based on different physical principles. To compare the information about the shape of the cup of an optic nerve head obtained by LST and CSP, we evaluated the volume profile (VP; i.e., the cross-sectional area of the cup from top to bottom) in 36 discs of 36 patients (20 control group discs C, 16 glaucoma discs G). The Spearman correlation coefficient between the photogrammetric and the laser scanning VP-slope measurements wasrs = 0.931;P < 0.001 (rs = 0.935G,P <0.001;rs = 0.910 C,P < 0.001). The results suggest that confocal laser scanning provides readings of the shape of the optic disc cup that are similar to the measurements of computed stereophotogrammetry.


Glaucoma Diagnostic Tool Laser Scanning Spearman Correlation Confocal Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Airaksinen PJ, Alanko HI (1983) Effect of retinal nerve fibre loss on the optic nerve head configuration in early glaucoma. Graefe's Arch Clin Exp Ophthalmol 220:193–196Google Scholar
  2. 2.
    Béchetoille A, Aouchiche M, Hartani D (1980) L'étude de Touggourt, une proposition pour le dépistage en masse des glaucomes chroniques par l'examen du disque optique. J Fr Ophthalmol 3:495–500Google Scholar
  3. 3.
    Bengtsson B (1989) Characteristics of manifest glaucoma at early stages. Graefe's Arch Clin Exp Ophthalmol 227:241–243Google Scholar
  4. 4.
    Betz P, Camps F, Collignon-Brach J, Lavergne G, Weekers R (1982) Biometric study of the disc cup in open-angle glaucoma. Graefe's Arch Clin Ophthalmol 218:70–74Google Scholar
  5. 5.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreements between two methods of clinical measurement. Lancet 8:307–310Google Scholar
  6. 6.
    Burk ROW, Rohrschneider K, Völcker HE, Zinser G (1990) Analysis of three-dimensional optic disk topography by laser scanning tomography. In: Nasemann JE, Burk ROW (eds) Scanning laser ophthalmoscopy and tomography. Quintessenz, Munich, pp 161–176Google Scholar
  7. 7.
    Burk ROW, Rohrschneider K, Noach H, Vö1cker HE (1992) Are large optic nerve heads susceptible to glaucomatous damage at normal intraocular pressure? Graefe's Arch Clin Exp Ophthalmol 230:552–560Google Scholar
  8. 8.
    Cornsweet TN, Hersh S, Humphries JC, Beesman RJ, Cornsweet DW (1983) Quantification of the shape and colour of the optic nerve head. In: Breinin GM, Siegel IM (eds) Advances in diagnostic visual optics. Springer, New York, 141–144Google Scholar
  9. 9.
    Dandona L, Quigley H, Jampel HD (1989) Reliability of optic nerve head topographic measurements with computerized image analysis. Am J Ophthalmol 108:414–421Google Scholar
  10. 10.
    Donaldson D, Prescott R, Kennedy S (1980) Simultaneous stereoscopic fundus camera utilising a single optical axis. Invest Ophthalmol Vis Sci 19:289–297Google Scholar
  11. 11.
    Douglas GR, Drance SM, Mikelberg FS, Schwartz B, Takamoto T (1987) Optic nerve head analysis using the Rodenstock analyzer. In: Krieglstein GK (ed) Glaucoma update III. Springer, Berlin Heidelberg New York, pp 106–111Google Scholar
  12. 12.
    Dreher AW, Tso PC, Weinreb RN (1991) Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. Am J Ophthalmol 111:221–229Google Scholar
  13. 13.
    Gloor B, Robert Y, Stürmer J (1987) Wert der EDV-gestützten Papillenbeurteilung im Vergleich zu der automatisierten Perimetrie in der Friihdiagnose des Glaukoms. Z Prakt Augenheilkd 8:400–407Google Scholar
  14. 14.
    Grainer E, Siebert M (1989) Optic nerve head measurements: The optic nerve head analyzer — its advantages and its limits. Int Ophthalmol 13:3–13Google Scholar
  15. 15.
    Johnson CA, Keltner JL, Krohn MA, Portney GL (1979) Photogrammetry of the optic disc in glaucoma and ocular hypertension with simultaneous stereo photography. Invest Ophthalmol Vis Sci 18:1252–1263Google Scholar
  16. 16.
    Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefe's Arch Clin Exp Ophthalmol 226:522–530Google Scholar
  17. 17.
    Krakau CET, Torlegard K (1972) Comparison between stereoand slit image photogrammetric measurements of the optic disc. Acta Ophthalmol 50:863–871Google Scholar
  18. 18.
    Kruse FE, Burk ROW, Völcker HE, Zinser G, Harbarth U (1989) Reproducibility of topographic measurements of the optic nerve head with laser tomographic scanning. Ophthalmology 96:1320–1324Google Scholar
  19. 19.
    Leydhecker W, Krieglstein GK, Colloni EV (1978) Observer variation in applanation tonometry and estimation of the cup disc ratio. In: Krieglstein GK, Leydhecker W (eds) Glaucoma update: International Glaucoma Symposium, Nara, Japan, 1978. Springer, Berlin Heidelberg New York, pp 101–117Google Scholar
  20. 20.
    Lichter PR (1976) Variability of expert observers in evaluating the optic disk. Trans Am Ophthalmol Soc 74:532–572Google Scholar
  21. 21.
    Robert Y (1985) Die klinischen Untersuchungsmethoden der Papille. Ihre Bedeutung für die Glaukom-Früherkennung. Ferdinand Enke, StuttgartGoogle Scholar
  22. 22.
    Rosenthal AR, Kottler MS, Donaldson DD, Falconer DG (1977) Comparative reproducibility of the digital photogrammetric procedure utilizing three methods of stereophotography. Invest Ophthalmol Vis Sci 16:54–60Google Scholar
  23. 23.
    Schwartz B (1973) Cupping and pallor of the optic disc. Arch Ophthalmol 89:272–277Google Scholar
  24. 24.
    Siegel S (1956) Nonparametric statistics in the behavioural sciences. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Spaeth GL, Hitchings RA, Silavingam E (1976) The optic disc in glaucoma: pathogenetic correlation of five patterns of cupping in chronic open-angle glaucoma. Trans Am Acad Ophthalmol Otolaryngol 81:217–223Google Scholar
  26. 26.
    Takamoto T, Schwartz B, Marzan GT (1979) Stereo measurements of the optic disc. Photogram Eng Remote Sensing 45:79–85Google Scholar
  27. 27.
    Takamoto T, Schwartz B (1984) Stereo measurements of the optic disc cup shape: volume profile method. Proc Am Soc Photogrammetry, Falls Church, Va, pp 352–358Google Scholar
  28. 28.
    Takamoto T, Schwartz B (1985) Reproducibility of photogrammetric optic disc cup measurements. Invest Ophthalmol Vis Sci 26:814–817Google Scholar
  29. 29.
    Tomita G, Takamoto T, Schwartz B (1989) Glaucomalike disks without increased intraocular pressure or visual field loss. Am J Ophthalmol 108:496–504Google Scholar
  30. 30.
    Varma R, Steinmann WC, Scott IU (1992) Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 99:215–221Google Scholar
  31. 31.
    Yablonski ME, Zimmerman TJ, Kass MA, Becker B (1980) Prognostic signficance of optic disc cupping in ocular hypertensive patients. Am J Ophthalmol 89:585–592Google Scholar
  32. 32.
    Zinser G, Harbarth U, Schröder H (1990) Formation and analysis of three-dimensional data with the laser tomographic scanner LTS. In: Nasemann JE, Burk ROW (eds) Scanning laser ophthalmoscopy and tomography. Quintessenz, Munich, pp 243–252Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Reinhard O. W. Burk
    • 1
  • Klaus Rohrschneider
    • 1
  • Takenori Takamoto
    • 2
  • Hans E. Völcker
    • 1
  • Bernhard Schwartz
    • 2
  1. 1.Universitäts-Augenklinik HeidelbergHeidelbergGermany
  2. 2.Department of OphthalmologyTufts University School of MedicineBostonUSA

Personalised recommendations