Skip to main content
Log in

Spectrometric investigations in ocular hypertension and early stages of primary open angle glaucoma and of low tension glaucoma — multisubstance analysis

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The approximation of logarithmic difference spectra between the reflectance of the normal fundus and the fundus reflectance in different stages of glaucoma is demonstrated by a model. The influences of fundus pigments like oxihemoglobin, melanin, xanthophyll and rhodopsin as well as the intensity and the exponent of the scattered light are optimized. Glaucomatous alterations in the extinction of these pigments and of the scattering parameters are different in the macula, in the papillo-macular bundle and in the parapapillary region temporal to the optic disc. A lack of oxihemoglobin only in the papillo-macular bundle in first relative losses in the visual field function points to a damaged microcirculation in early POAG. In progressive glaucoma the extinction spectrum of xanthophyll is detectable in the papillo-macular bundle. A decreased intensity of the scattered light and an altered scattering exponent are suggestive of a damage in the nerve fiber layer at early stages of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caprioli J, Ortiz-Colberg R, Miller JM, Tressler Ch. Measurements of peripapillary nerve fiber layer contour in glaucoma. Am J Ophthalmol 1989; 108: 404–13.

    Google Scholar 

  2. Zeimer RC, Shahidi M, Mori MT, Benhamon E.In vivo evaluation of a noninvasive method to measure the retinal thickness in primate. Arch Ophthalmol 1989; 107:1006–9.

    Google Scholar 

  3. Cristini G, Cennamo G, Daponte P. Choroidal thickness in primary glaucoma. Ophthalmologica 1991; 202: 81–5.

    Google Scholar 

  4. Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K. Histopathologic validation of fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol 1990; 108: 557–60.

    Google Scholar 

  5. Eikelboom RH, Cooper RL, Barry ChJ. A study of variance in densitometry of retinal nerve fiber layer photographs in normals and glaucoma suspects. Invest Ophthalmol Vis Sci 1990; 31: 2373–83.

    Google Scholar 

  6. Knighton RW, Jacobson SG, Kemp CM. The spectral reflectance of the nerve fiber layer of the macaque retina. Invest Ophthalmol Vis Sci 1989; 30: 2393–402.

    Google Scholar 

  7. Schweitzer D, Tröger G, Koenigsdoerffer E, Klein S. Multisubstanzanalyse — Nachweis von Substanzen in einzelnen Schichten des Augenhintergrundes. Fortschr Ophthalmol 1991; 88: 554–61.

    Google Scholar 

  8. Schweitzer D, Klein S, Stein A, Truckenbrodt C. Glaukomdiagnostik mittels Fundusspektrometrie in Bereichen außerhalb der Papille. Klin Mbl Augenheilk 1991; 198: 544–9.

    Google Scholar 

  9. Aulhorn E, Karmeyer H. Frequency distribution in early glaucomatous visual field defects. 2nd Internat Visual Field Symposium, Tübingen (1976). In: Doc Ophthalmol Proc Ser 1977; 14: 75–83.

    Google Scholar 

  10. Gloor B, Gloor E. Die Erfaßbarkeit glaukomatöser Gesichtsfeldausfälle mit dem automatischen Perimeter Octopus. Klin Mbl Augenheilk 1986; 188: 33–8.

    Google Scholar 

  11. Schweitzer D, Klein S, Guenther S. Early diagnosis of glaucoma by means of fundus spectrometry. Proceedings of the International Glaucoma Symposium, Jerusalem, Israel August 18th-22nd 1991.

  12. Lemberg R, Legge JW. Hematin compounds and bile pig-ments. In: Richterich R, editor. Klinische Chemie 3. Auflage, Basel: S. Karger, 1971.

    Google Scholar 

  13. Gabel VP, Hillenkamp F. Visible and near infrared light absorption in pigment epithelium and choroid. In: Shimizu K, editor. XXIII. Concilium Ophthalmologicum, Excerpta Medica, Amsterdam, 1978: 658–62.

    Google Scholar 

  14. Wyszecki G, Stiles WS. Color science. New York: Wiley, 1967.

    Google Scholar 

  15. Brown PK, Wald G. Visual pigments in single rods and cones of the human retina. Science 1964; 144: 45–52.

    Google Scholar 

  16. Schweitzer D, Klein S, Deufrains A, Koenigsdoerffer E. Limits of fundus reflectometry. In: Nasemann J, Burk R, editors. Scanning laser ophthalmoscopy and tomography. Muenchen: Quintessenz Verlag GmbH, 1990.

    Google Scholar 

  17. Flamer J. Neigung zu vasospastischen Reaktionen bei Patienten mit Glaukom und glaukomähnlichen Erkrankungen. In: Stodtmeister R, Pillunat LE, editors. Mikrozirkulation in Gehirn und Sinnesorganen. Stuttgart: F. Enke Verlag, 1991.

    Google Scholar 

  18. Jonas JB, Gusek GC, Naumann GOH. Die parapapilläre Region in Normal- und Glaukomaugen. I. Planimetrische Werte von 312 Glaukom- und 125 Normalaugen. Klin Mbl Augenheilk 1988; 193: 52–61.

    Google Scholar 

  19. Snodderly MD, Auran F, Delori F. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 1984; 25: 674–85.

    Google Scholar 

  20. Shahidi M, Zeimer RC, Mori M. Topography of the retinal thickness in normal subjects. Ophthalmology 1990; 97: 1120–4.

    Google Scholar 

  21. Glovinsky Y, Quigley HA, Brown AE, Pease ME. Macular ganglion cell loss in size dependent in experimental glaucoma. Proceedings of the International Glaucoma Symposium, Jerusalem, Israel, August 18th–22nd, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, D., Guenther, S., Scibor, M. et al. Spectrometric investigations in ocular hypertension and early stages of primary open angle glaucoma and of low tension glaucoma — multisubstance analysis. Int Ophthalmol 16, 251–257 (1992). https://doi.org/10.1007/BF00917971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917971

Key words

Navigation