Skip to main content
Log in

Stimulus-dependent actin polymerization in bovine neutrophils

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Polymorphonuclear leukocytes (PMNs) are responsible for much of the first wave of leukocyte-mediated host defense against microbial pathogens. In order to migrate through the endothelium of vessel walls, undergo chemotaxis, and phagocytize microbes, PMNs must modulate their cytoskeletal elements and undergo change of cellular shape. We have used fluorescence flow cytometric analysis and cellular microscopic observations to demonstrate actin polymerization in bovine PMNs and to examine the kinetics of PMN actin polymerization utilizing different PMN stimuli. In addition, we compared temporal relationships between cellular shape and actin polymerization. Actin polymerization occurred rapidly, and the kinetics of actin polymerization were similar for each of the three PMN agonists used, ZAS (10%), PAF (10−6 M), and rhC5a (10−7 M). Actin polymerization was near-maximal by 10 sec poststimulation (95.4% of maximal F-actin content attained by 10 sec poststimulation with ZAS stimulation), and reached peak values by 30 sec. The maximal increase in F-actin content of agonist-stimulated cells as compared to resting cells was 2.8-fold with ZAS; 2.3-fold with PAF; and 2.3-fold with rhC5a. PMN shape change (pseudopodia, membrane raffles) was not as rapid, with only 22.4% of cells attaining visible membrane deformation by 10 sec and requiring 120 sec to reach peak shape-change values. After attaining peak values, the two events also differed. Whereas the percent of shape-changed PMNs remained plateaued up to 5 min poststimulation, the F-actin content gradually decreased after 30 sec, approaching F-actin values of unstimulated PMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawyer, D. W., G. R. Donowitz, andG. L. Mandell. 1989. Polymorphonuclear neutrophils: An effective antimicrobial force.Rev. Infect. Dis. 11(Suppl. 7):S1532-S1544.

    Google Scholar 

  2. Colditz, I. G., R. L. Kerlin, andD. L. Watson. 1988. Migration of neutrophils and their role in elaboration of host defense.In Migration and Homing of Lymphoid Cells. A. J. Husband, editor. CRC Press, Boca Raton, Florida. 135–165.

    Google Scholar 

  3. Ferrante, A., M. Nandoskar, A. Walz, D. H. B. Goh, andI. C. Kowanko. 1988. Effects of tumor necrosis factor alpha and interleukin-1 alpha and beta on human neutrophil migration, respiratory burst and degranulation.Int. Arch. Allergy Appl. Immunol. 86:82–91.

    Google Scholar 

  4. Webster, R. O., S. R. Hong, R. B. Johnston Jr., andP. M. Henson. 1980. Biologic effects of the human complement fragments C5a and C5adesArg on neutrophil function.Immunopharmacology 2:201–219.

    Google Scholar 

  5. Van Kessel, K. P. M., andJ. Verhoef. 1990. A view to a kill: Cytotoxic mechanisms of human polymorphonuclear leukocytes compared with monocytes and natural killer cells.Pathobiology 58:249–264.

    Google Scholar 

  6. Packman, C. H., andM. A. Lichtman. 1990. Activation of neutrophils: Measurement of actin conformational changes by flow cytometry.Blood Cells 16:193–207.

    Google Scholar 

  7. Stossel, T. P. 1989. From signal to pseudopod. How cells control cytoplasmic actin assembly.J. Biol. Chem. 264:18261–18264.

    Google Scholar 

  8. Howard, T. H., andW. H. Meyer. 1984. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils.J. Cell Biol. 98:1265–1271.

    Google Scholar 

  9. Korn, E. D. 1982. Actin polymerization and its regulation by proteins from nonmuscle cells.Physiol. Rev. 62:672–737.

    Google Scholar 

  10. Wallace, P. J., R. P. Wersto, C. H. Packman, andM. A. Lichtman. 1984. Chemotactic peptide-induced changes in neutrophil actin conformation.J. Cell Biol. 99:1060–1065.

    Google Scholar 

  11. Holden, W., D. O. Slauson, R. D. ZWAhlen, M. M. Suyemoto, M. Dore, andN. R. Neilsen. 1989. Alterations in complement-induced shape change and stimulus-specific superoxide anion generation by neonatal calf neutrophils.Inflammation 13:607–620.

    Google Scholar 

  12. Clifford, C. B., D. O. Slauson, N. R. Neilsen, M. M. Suyemoto, R. D. Zwahlen, andD. H. Schlafer. 1989. Ontogeny of inflammatory cell responsiveness: Superoxide anion generation by phorbol ester-stimulated fetal, neonatal, and adult bovine neutrophils.Inflammation 13:221–231.

    Google Scholar 

  13. Dore, M., D. O. Slauson, M. M. Suyemoto, andN. R. Neilsen. 1990. Calcium mobilization in C5a-stimulated adult and newborn bovine neutrophils.Inflammation 14:71–82.

    Google Scholar 

  14. Hammerschmidt, D. E., T. K. Bowers, C. J. Lammi-Keefe, H. S. Jacob, andP. R. CradDock. 1980. Granulocyte aggregometry: A sensitive technique for the detection of C5a and complement activation.Blood 55:898–902.

    Google Scholar 

  15. Slauson, D. O., D. S. Skrabalak, N. R. Neilsen, andR. D. Zwahlen. 1987. Complementinduced equine neutrophil adhesiveness and aggregation.Vet. Pathol. 24:239–249.

    Google Scholar 

  16. Howard, T. H., andC. O. Oresajo. 1985. The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils.J. Cell Biol. 101:1078–1085.

    Google Scholar 

  17. Howard, T., C. Chaponnier, H. Yin, andT. Stossel. 1990. Gelsolin-actin interaction and actin polymerization in human neutrophils.J. Cell Biol. 110:1983–1991.

    Google Scholar 

  18. Wymann, M. P., P. Kernen, T. Bengtsson, T. Andersson, M. Baggiolini, andD. A. Deranleau. 1990. Corresponding oscillations in neutrophil shape and filamentous actin content.J. Biol. Chem. 265:619–622.

    Google Scholar 

  19. Wang, D. H., K. Berry, andT. H. Howard. 1990. Kinetic analysis of chemotactic peptideinduced actin polymerization in neutrophils.Cell Motil. Cytoskeleton 16:80–87.

    Google Scholar 

  20. Niggli, V., andH. Keller. 1991. On the role of protein kinases in regulating neutrophil actin association with the cytoskeleton.J. Biol. Chem. 266:7927–7932.

    Google Scholar 

  21. Bengtsson, T., T. Stendahl, andT. Andersson. 1986. The role of cytosolic free calcium transient for fMet-Leu-Phe induced actin polymerization in human neutrophils.Eur. J. Cell Biol. 42:338–343.

    Google Scholar 

  22. Bengtsson, T., E. Sarndahl, Biol. Stendahl, andT. Andersson. 1990. Involvement of GTPbinding proteins in actin polymerization in human neutrophils.Proc. Natl. Acad. Sci. U.S.A. 87:2921–2925.

    Google Scholar 

  23. Watts, R. G., M. A. Crispens, andT. H. Howard. 1991. A quantitative study of the role of F-actin in producing neutrophil shape.Cell. Motil. Cytoskeleton 19:159–168.

    Google Scholar 

  24. Hilmo, A., andT. H. Howard. 1987. F-actin content of neonate and adult neutrophils.Blood 69:945–949.

    Google Scholar 

  25. Sacchi, F., N. H. Augustine, M. M. Coello, E. Z. Morris, andH. R. Hill. 1987. Abnormality in actin polymerization associated with defective chemotaxis in neutrophils from neonates.Int. Arch. Allergy Appl. Immunol. 84:32–39.

    Google Scholar 

  26. Southwick, F. S., G. A. Dabiri, andT. P. Stossel. 1988. Neutrophil actin dysfunction is a genetic disorder associated with partial impairment of neutrophil actin assembly in three family members.J. Clin. Invest. 82:1525–1531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochsler, P.N., Neilsen, N.R., Dean, D.F. et al. Stimulus-dependent actin polymerization in bovine neutrophils. Inflammation 16, 383–392 (1992). https://doi.org/10.1007/BF00917629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917629

Keywords

Navigation