, Volume 15, Issue 5, pp 331–346 | Cite as

Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion

  • Mary G. Oliver
  • Robert D. Specian
  • Michael A. Perry
  • D. Neil Granger
Original Articles


Intravital microscopic studies of the mesenteric microcirculation have demonstrated that leukocyte adherence and emigration in postcapillary venules are a characteristic feature of tissues exposed to ischemia-reperfusion. The objectives of this study were to determine whether: (1) neutrophils are the predominant leukocytes that adhere and emigrate in postischemic mesenteric venules, and (2) leukocyte adherence and/or emigration are a prerequisite for reperfusion-induced increases in venular permeability. Leukocyte kinetics in cat mesenteric venules (25–35μm diameter) were evaluated using both intravital microscopy and quantitative morphometry. The intestine and mesentery were exposed to 60 min of ischemia, followed by 60 min reperfusion. Some animals were pretreated with a monoclonal antibody (MoAb IB4) against the leukocyte adhesion glycoprotein, CD11/CD18. Vessels observed by intravital microscopy and adjacent venules of similar diameter were excised and processed for light (LM) and electron microscopy (EM). Horseradish peroxidase (HRP), administered intravenously, was used to assess vascular permeability by EM. By LM, the control (nonischemic) mesentery is sparsely populated by plasma cells, mast cells, and leukocytes; 30–50% of the resident population is neutrophils. Ischemia-reperfusion led to a significant increase in the number of extravascular cells, with neutrophils accounting for >80% of the total cell population. Control and ischemic venules demonstrated no leakage of HRP into the interstitium. However, venules exposed to ischemia and reperfusion demonstrated HRP leakage between endothelial cells and into the surrounding interstitium; neutrophils were adherent to the luminal surface of the endothelium, transmigrating the vessel wall, and in the surrounding interstitium. Animals pretreated with MoAb IB4 presented the same cell profile as nonischemic controls, with no adherent or transmigrating neutrophils. However, some HRP leakage was noted following reperfusion in venules treated with MoAb IB4. The results of this study indicate that: (1) neutrophils are the predominate leukocytes that adhere and emigrate in postischemic venules, and (2) inhibition of leukocyte adhesion does not completely prevent the venular dysfunction associated with ischemia-reperfusion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Granger, D. N. 1988. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury.Am. J. Physiol. 255:H1269-H1275.Google Scholar
  2. 2.
    Granger, D. N., M. E. Hollwarth, andD. A. Parks. 1986. Ischemia-reperfusion injury: Role of oxygen-derived free radicals.Acta Physiol. Scand. (suppl.) 548:47–53.Google Scholar
  3. 3.
    Fujimoto, K., V. H.Price, D. N.Granger, R.Specian, S.Bergstedt, and P.Tso. 1991. Effect of ischemia-reperfusion on lipid digestion and absorption in rat intestine.Am. J. Physiol. (in press).Google Scholar
  4. 4.
    Harlan, J. M. 1985. Leukocyte-endothelial cell interactions.Blood 65:513–525.Google Scholar
  5. 5.
    Arfors, K. E., G. Rutili, andE. Svensjo. 1979. Microvascular transport of macromolecules in normal and inflammatory conditions.Acta. Physiol. Scand. (Suppl.) 463:93–103.Google Scholar
  6. 6.
    Granger, D. N., Benoit, J. N., Suzuki, M., andGrisham, M. B. 1989. Leukocyte adherence to venular endothelium during ischemia-reperfusion.Am. J. Physiol. 257:G683-G688.Google Scholar
  7. 7.
    Messmer, K., Sack, F. U., Menger, M. D., Barlett, R., Barker, J. H., andHammersen, F. 1988. White cell-endothelium interaction during postischemic perfusion of skin and skeletal muscle.Adv. Exp. Med. Biol. 242:95–103.Google Scholar
  8. 8.
    Grisham, M. B., L. A. Hernandez, andD. N. Granger. 1986. Xanthine oxidase and neutrophil infiltration in intestinal ischemia.Am. J. Physiol. 251:G567-G571.Google Scholar
  9. 9.
    Hernandez, L. A., M. B. Grisham, B. Twohig, K. E. Arfors, J. M. Harlan, andD. N. Granger. 1987. Role of neutrophils in ischemia-reperfusion-induced microvascular injury.Am. J. Physiol. 253:H699-H703.Google Scholar
  10. 10.
    Kubes, P., G. Ibbotson, J. Russell, J. L. Wallace, andD. N. Granger. 1990. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence.Am. J. Physiol. 259:G300-G305.Google Scholar
  11. 11.
    Wright, S. D., D. E. Rao, W. C. Van Voorhis, L. S. Craigmyle, K. Iida, M. A. Talle, E. F. Westberg, G. Goldstein, andS. C. Silverstein. 1983. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies.Proc. Natl. Acad. Sci. U.S.A. 80:5699–5704.Google Scholar
  12. 12.
    Suzuki, M., W. Inauen, P. R. Kvietys, M. B. Grisham, C. J. Meininger, M. E. Schelling, H. J. Granger, andD. N. Granger. 1989. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions.Am. J. Physiol. 257:H1740-H1745.Google Scholar
  13. 13.
    Perry, M. A., andD. N. Granger. 1991. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.J. Clin. Invest. 87:1798–1804.Google Scholar
  14. 14.
    House, S. D., andH. Lipowsky. 1987. Leukocyte-endothelium adhesion: Microhemodynamics in mesentery of the cat.Microvasc. Res. 34:363–379.Google Scholar
  15. 15.
    Watson, M. L. 1958. Staining of tissue sections for electron microscopy with heavy metals.J. Biophys. Biochem. Cytol. 4:727–729.Google Scholar
  16. 16.
    Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy.J. Cell Biol. 17:208–212.Google Scholar
  17. 17.
    Kvietys, P. R., B. Twohig, J. Danzell, andR. D. Specian. 1990. Ethanol-induced injury to the rat gastric mucosa: Role of neutrophils and xanthine oxidase derived radicals.Gastroenterology 98:909–920.Google Scholar
  18. 18.
    Wallace, J. L., C. M. Keenan, andD. N. Granger. 1990. Gastric ulceration induced by non-steroidal anti-inflammatory drugs is a neutrophil-dependent process.Am. J. Physiol. 259:G462-G467.Google Scholar
  19. 19.
    Grisham, M. B., J. N. Benoit, andD. N. Granger. 1990. Assessment of leukocyte involvement during ischemia and reperfusion of the intestine.Methods Enzymol. 186:729–742.Google Scholar
  20. 20.
    Lewis, R. E., andH. J. Granger. 1988. Diapedesis and the permeability of venous microvessels to protein macromolecules: The impact of leukotriene B4.Microvasc. Res. 35:27–47.Google Scholar
  21. 21.
    Lewis, R. E., R. A. Miller, andH. J. Granger. 1989. Acute microvascular effects of the chemotactic peptideN-fonnyl-methionyl-leucyl-phenylalanine: Comparisons with leukotriene B4.Microvasc. Res. 37:53–69.Google Scholar
  22. 22.
    Zimmerman, B. J., andD. N. Granger. 1990. Reperfusion-induced leukocyte infiltration: Role of elastase.Am. J. Physiol. 259:H390-H394.Google Scholar
  23. 23.
    Inauen, W., D. N. Granger, C. J. Meininger, M. E. Schelling, H. J. Granger, andP. R. Kvietys. 1990. An in vitro model of ischemia/reperfusion-induced microvascular injury.Am. J. Physiol. 259:G134-G139.Google Scholar
  24. 24.
    Inauen, W., D. N. Granger, C. J. Meininger, M. E. Schelling, H. J. Granger, andP. R. Kvietys. 1990. Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: Role of elastase.Am. J. Physiol. 259:H925-H931.Google Scholar
  25. 25.
    Kubes, P., andD. N. Granger. 1989. Interaction between circulating granulocytes and xanthine oxidase-derived oxidants in the postischemic intestine.In Clinical Aspects of O2 Transport and Tissue Oxygenation. K. Reinhart and K. Eyrich, editors. Springer-Verlag, Berlin. 133–147.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Mary G. Oliver
    • 1
  • Robert D. Specian
    • 1
  • Michael A. Perry
    • 2
  • D. Neil Granger
    • 1
  1. 1.Departments of Cellular Biology and Anatomy, and PhysiologyLouisiana State University Medical CenterShreveport
  2. 2.School of Physiology and PharmacologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations