Advertisement

Stability of stationary spatially periodic convective motions in a plane vertical layer

  • L. P. Vozovoi
  • A. A. Nepomnyashchii
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Convective Motion Vertical Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Z. Gershuni and E. M. Zhukovitskii, Convective Stability of Incompressible Fluids, Halsted Press (1976).Google Scholar
  2. 2.
    G. Z. Gershuni and E. M. Zhukovitskii. Convective Stability. Liquid and Gas Mechanics (Developments in Science and Technology) [in Russian], Vol. 11 (1978).Google Scholar
  3. 3.
    R. M. Clever and F. H. Busse, “Instabilities of longitudinal convection rolls in an inclined layer,” J. Fluid Mech.,81, No. 1 (1977).Google Scholar
  4. 4.
    R. M. Clever, F. H. Busse, and R. E. Kelly, “Instabilities of longitudinal convection rolls in Couette flow,” Z. Angew. Math. Phys.,28, No. 5 (1977).Google Scholar
  5. 5.
    F. H. Busse, “On the stability of two-dimensional convection in a layer heated from below,” J. Math. Phys.,46, No. 2 (1967).Google Scholar
  6. 6.
    R. M. Clever and F. H. Busse, “Transition to time-dependent convection,” J. Fluid Mech.,65, No. 4 (1974).Google Scholar
  7. 7.
    F. H. Busse and R. M. Clever, “Instabilities of convection rolls in a fluid of moderate Prandtl number,” J. Fluid Mech.,91, No. 2 (1979).Google Scholar
  8. 8.
    O. Kvernvold, “Rayleigh-Benard convection with one free and one rigid boundary,” Geophys. Astrophys. Fluid Dyn.,12, No. 3–4 (1979).Google Scholar
  9. 9.
    M. Tveiterei and F. Palm, “Convection due to internal heat sources,” J. Fluid Mech.,16, No. 3 (1976).Google Scholar
  10. 10.
    E. L. Tarunin, “Determination of the convective equilibrium stability boundary by the grid method,” in: Computer Programs and Algorithms [in Russian], Perm (1978).Google Scholar
  11. 11.
    L. P. Vozovoi and A. A. Nepomnyashchii, “Use of the grid method for study of stability of spatially periodic motions,” in: Numerical Methods in the Dynamics of a Viscous Liquid [in Russian], Novosibirsk (1979).Google Scholar
  12. 12.
    G. Z. Gershuni, E. M. Zhukovitskii, and E. L. Tarunin, “Secondary stationary convective motions in a plane vertical liquid layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1968).Google Scholar
  13. 13.
    E. L. Tarunin, “Secondary stationary convective flows in a vertical layer,” Uch. Zap. Perms. Univ., No. 293; Gidrodinam., No. 4 (1974).Google Scholar
  14. 14.
    A. A. Nepomnyashchii, “Secondary convective flows in a plane vertical layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1975).Google Scholar
  15. 15.
    A. A. Nepomnyashchii, “Types of secondary convective flow in a vertical layer,” in: Convective Flows and Hydrodynamic Stability [in Russian], Izd. Akad. Nauk SSSR, Sverdlovsk (1979).Google Scholar
  16. 16.
    A. A. Nepomnyashchii, “Nonstationary secondary convective motions in a vertical plane layer,” in: Convective Flows [in Russian], 1st edn., PGPI, Perm (1979).Google Scholar
  17. 17.
    J. M. Zaiman, Principles of Solid State Theory [Russian translation], Mir, Moscow (1974).Google Scholar
  18. 18.
    N. N. Yanenko, The Partial Step Method for Solution of Multidimensional Problems in Mathematical Physics [in Russian], Nauka, Novosibirsk (1967).Google Scholar
  19. 19.
    A. A. Samarskii, Theory of Difference Systems [in Russian], Nauka, Moscow (1977).Google Scholar
  20. 20.
    L. P. Vozovoi and A. A. Nepomnyashchii, “Nonstationary convective flows in a vertical layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. P. Vozovoi
    • 1
  • A. A. Nepomnyashchii
    • 1
  1. 1.Perm

Personalised recommendations