Skip to main content
Log in

Effect of thermal treatment of various carbons on the adsorption of vapors

  • Published:
Bulletin of the Academy of Sciences of the USSR, Division of chemical science Aims and scope

Summary

  1. 1.

    Adsorption isotherms have been determined and compared for the vapors of water, methanol, and benzene on a number of carbon blacks which had been subjected to different thermal treatments. With increasing treatment temperature, there were decreases in both the amount of surface oxygen, capable of exchange reaction with aqueous NaOH, and in surface roughness of the blacks. The surface of the blacks became much more uniform after treatment in a hydrogen stream at 1700°.

  2. 2.

    Adsorption of water vapor fell rapidly with increasing graphitization, mainly as the result of removal of surface oxides. With blacks graphitized in a hydrogen stream at 1700°, water vapor adsorption was very small, even in the region of high pressure ratios.

  3. 3.

    Adsorption of methanol vapor on graphitized blacks dropped markedly in the region of low pressure ratios, as the result of destruction of surface oxides. In this case, decrease in surface roughness played a secondary role.

  4. 4.

    Adsorption of benzene vapor on graphitized blacks decreased, with decreasing surface roughness and surface coverage with chemical compounds, in the region of low surface coverage.

  5. 5.

    The surface properties of blacks of different origin were very similar after graphitization in a hydrogen stream at 1700δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. B. E. Warren, J. Chem. Phys. 2, 551 (1934); J. Biscoe and B. E. Warren, J. Appl. Phys. 13, 364 (1942).

    Google Scholar 

  2. G. L. Clark, A. G. Eckert, and B. L. Burton, Industr. and Engng. Chem. 41, 201 (1949).

    Google Scholar 

  3. W. D. Schaeffer, W. R. Smith, and M. H. Polley, Industr. and Engng. Chem. 45, 1721 (1953).

    Google Scholar 

  4. M. H. Polley, W. D. Schaeffer, and W. R. Smith, J. Phys. Chem. 57, 469 (1953).

    Google Scholar 

  5. R. A. Beebe, J. Biscoe, W. R. Smith, and C. B. Wendell, J. Am. Chem. Soc. 69, 95 (1947).

    Google Scholar 

  6. R. B. Anderson and P. H. Emmett, J. Appl. Phys. 19, 367 (1948).

    Google Scholar 

  7. D. S. Villars, J. Am. Chem. Soc. 69, 214 (1947); 70. 3655 (1948).

    Google Scholar 

  8. R. S. Stearns and B. L. Johnson, Industr. and Engng. Chem. 43, 146 (1953).

    Google Scholar 

  9. G. Kraus, J. Phys. Chem. 59, 343 (1955).

    Google Scholar 

  10. N. A. Shilov, E. G. Shatunskaya, and K. V. Chmutov, Z. Phys. Chem. A 148, 233 (1930); A 149, 211 (1930); A 150, 31 (1930).

    Google Scholar 

  11. M. M. Dubinin and E. D. Zaverina, J. Phys. Chem. 13, 151 (1939); Bull. Acad. Sci. USSR, Div. Chem. Sci. 594 (1955)s* E. D. Zaverina and M. M. Dubinin, J. Phys. Chem. 21, 1373 (1947).

    Google Scholar 

  12. M. M. Dubinin, Surface Chemical Compounds and Their Role in Adsorption Phenomena, pub. MGU (1957), p. 9.

  13. C. Pierce and R. N. Smith, J. Phys. Chem. 58, 298 (1954).

    Google Scholar 

  14. R. N. Smith, J. Duffield, R. Pierotti, and Y. Mooi, J. Phys. Chem. 60, 459 (1956).

    Google Scholar 

  15. S. Ross and W. W. Pultz, J. Coll. Sci. 13, 397 (1958).

    Google Scholar 

  16. R. A. Beebe and R. M. Dell, J. Phys. Chem. 59, 746 (1955).

    Google Scholar 

  17. G. D. Halsey, J. Am. Chem. Soc. 73, 2693 (1951); 74, 1082 (1952).

    Google Scholar 

  18. A. V. Kiselev and E. V. Khrapova, Bull. Acad. Sci. USSR, Div. Chem. Sci. 389 (1958).

  19. R. A. Beebe and D. M. Young, J. Phys. Chem. 58, 95 (1954).

    Google Scholar 

  20. C. H. Amberg, W. B. Spenser, and R. A. Beebe, Canad. J. Chem. 33, 305 (1955).

    Google Scholar 

  21. R. A. Beebe, M. H. Polley, W. R. Smith, and C. B. Wendell, J. Am. Chem. Soc. 69, 2294 (1947).

    Google Scholar 

  22. J. W. Ross and R. J. Good, J. Phys. Chem. 60, 1167 (1956).

    Google Scholar 

  23. N. N. Avgul', G. I. Berezin, A. V. Kiselev, and I. A. Lygina, J. Phys. Chem. 30, 2106 (1956).

    Google Scholar 

  24. N. N. Avgul', G. I. Berezin, A. V. Kiselev, and I. A. Lygina, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1304 (1956); 1021 (1957); 787 (1959).

    Google Scholar 

  25. N. N. Avgul', Surface Chemical Compounds and Their Role in Adsorption Phenomena, Pub, MGU (1957), p. 34.

    Google Scholar 

  26. P. H. Emmett and R. B. Andersen, J. Am. Chem. Soc. 67, 1492 (1945).

    Google Scholar 

  27. C. Pierce and R. N. Smith, J. Phys. Coll. Chem. 54, 795 (1950).

    Google Scholar 

  28. C. Pierce, R. N. Smith, J. W. Willey, and H. Cordes, J. Am. Chem. Soc. 73, 4551 (1951).

    Google Scholar 

  29. N. N. Avgul', O. M. Dzhigit, and A. V. Kiselev, Proc. Acad. Sci. USSR 86, 95 (1952).

    Google Scholar 

  30. N. N. Avgul', O. M. Dzhigit, A. V. Kiselev, and K. D. Shcherbakova, Proc. Acad. Sci. USSR 92, 105 (1953).

    Google Scholar 

  31. B. Millard, E. G. Gaswell, E. E. Leger, and D. R. Mills, J. Phys. Chem. 59, 976 (1955).

    Google Scholar 

  32. G. J. Young, J. J. Chessick, F. H. Healey, and A. C. Zettlemoyer, J. Phys. Chem. 58, 313 (1954).

    Google Scholar 

  33. A. V. Kiselev and N. V. Kovaleva, J. Phys. Chem. 30, 2775 (1956).

    Google Scholar 

  34. A. V. Kiselev, N. V. Kovaleva, V. A. Sinitsin, and E. V. Khrapova, Colloid J. 20, 444 (1958).

    Google Scholar 

  35. N. N. Avgul', O. M. Dzhigit, A. V. Kiselev, and K. D. Shcherbakova, Proc. Acad. Sci. USSR 92, 1185 (1953).

    Google Scholar 

  36. C. Pierce and R. N. Smith, J. Phys. Coll. Chem. 54, 374 (1950).

    Google Scholar 

  37. B. Millard, R. A. Beebe, and J. Cynarsky, J. Phys. Chem. 58, 468 (1954).

    Google Scholar 

  38. P. A. Tessner and M. M. Polyakova, Proc. Acad. Sci. USSR 93, 855 (1953).

    Google Scholar 

  39. R. B. Anderson and P. H. Emmett, J. Phys. Chem. 56, 756 (1952).

    Google Scholar 

  40. R. M. Dell and R. A. Beebe, J. Phys. Chem. 59, 754 (1955).

    Google Scholar 

  41. V. P. Dreving, A. V. Kiselev, and Yu. A. El'tekov, Proc. Acad. Sci. USSR 86, 95 (1952).

    Google Scholar 

  42. H. L. McDermot, and L. C. Arnell, J. Phys. Chem. 58, 492 (1954).

    Google Scholar 

  43. N. N. Avgul', G. I. Berezin, A. V. Kiselev, I. A. Lygina, and G. G. Muttik, J. Phys. Chem. 31, 1111 (1957).

    Google Scholar 

  44. A. V. Kiselev, Proc. Acad. Sci. USSR 106, 1046 (1956).

    Google Scholar 

  45. N. Smith, C. Pierce, and H. Cordes, J. Am. Chem. Soc. 72, 5595 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author's thanks are due to M. M. Dubinin for his advice and encouragement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.V., Kovaleva, N.V. Effect of thermal treatment of various carbons on the adsorption of vapors. Russ Chem Bull 8, 955–964 (1959). https://doi.org/10.1007/BF00916659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916659

Keywords

Navigation