Advertisement

Effect of thermal treatment of various carbons on the adsorption of vapors

  • A. V. Kiselev
  • N. V. Kovaleva
Article

Summary

  1. 1.

    Adsorption isotherms have been determined and compared for the vapors of water, methanol, and benzene on a number of carbon blacks which had been subjected to different thermal treatments. With increasing treatment temperature, there were decreases in both the amount of surface oxygen, capable of exchange reaction with aqueous NaOH, and in surface roughness of the blacks. The surface of the blacks became much more uniform after treatment in a hydrogen stream at 1700°.

     
  2. 2.

    Adsorption of water vapor fell rapidly with increasing graphitization, mainly as the result of removal of surface oxides. With blacks graphitized in a hydrogen stream at 1700°, water vapor adsorption was very small, even in the region of high pressure ratios.

     
  3. 3.

    Adsorption of methanol vapor on graphitized blacks dropped markedly in the region of low pressure ratios, as the result of destruction of surface oxides. In this case, decrease in surface roughness played a secondary role.

     
  4. 4.

    Adsorption of benzene vapor on graphitized blacks decreased, with decreasing surface roughness and surface coverage with chemical compounds, in the region of low surface coverage.

     
  5. 5.

    The surface properties of blacks of different origin were very similar after graphitization in a hydrogen stream at 1700δ.

     

Keywords

Surface Roughness Water Vapor Thermal Treatment Carbon Black Surface Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. [1]
    B. E. Warren, J. Chem. Phys. 2, 551 (1934); J. Biscoe and B. E. Warren, J. Appl. Phys. 13, 364 (1942).Google Scholar
  2. [2]
    G. L. Clark, A. G. Eckert, and B. L. Burton, Industr. and Engng. Chem. 41, 201 (1949).Google Scholar
  3. [3]
    W. D. Schaeffer, W. R. Smith, and M. H. Polley, Industr. and Engng. Chem. 45, 1721 (1953).Google Scholar
  4. [4]
    M. H. Polley, W. D. Schaeffer, and W. R. Smith, J. Phys. Chem. 57, 469 (1953).Google Scholar
  5. [5]
    R. A. Beebe, J. Biscoe, W. R. Smith, and C. B. Wendell, J. Am. Chem. Soc. 69, 95 (1947).Google Scholar
  6. [6]
    R. B. Anderson and P. H. Emmett, J. Appl. Phys. 19, 367 (1948).Google Scholar
  7. [7]
    D. S. Villars, J. Am. Chem. Soc. 69, 214 (1947); 70. 3655 (1948).Google Scholar
  8. [8]
    R. S. Stearns and B. L. Johnson, Industr. and Engng. Chem. 43, 146 (1953).Google Scholar
  9. [9]
    G. Kraus, J. Phys. Chem. 59, 343 (1955).Google Scholar
  10. [10]
    N. A. Shilov, E. G. Shatunskaya, and K. V. Chmutov, Z. Phys. Chem. A 148, 233 (1930); A 149, 211 (1930); A 150, 31 (1930).Google Scholar
  11. [11]
    M. M. Dubinin and E. D. Zaverina, J. Phys. Chem. 13, 151 (1939); Bull. Acad. Sci. USSR, Div. Chem. Sci. 594 (1955)s* E. D. Zaverina and M. M. Dubinin, J. Phys. Chem. 21, 1373 (1947).Google Scholar
  12. [12]
    M. M. Dubinin, Surface Chemical Compounds and Their Role in Adsorption Phenomena, pub. MGU (1957), p. 9.Google Scholar
  13. [13]
    C. Pierce and R. N. Smith, J. Phys. Chem. 58, 298 (1954).Google Scholar
  14. [14]
    R. N. Smith, J. Duffield, R. Pierotti, and Y. Mooi, J. Phys. Chem. 60, 459 (1956).Google Scholar
  15. [15]
    S. Ross and W. W. Pultz, J. Coll. Sci. 13, 397 (1958).Google Scholar
  16. [16]
    R. A. Beebe and R. M. Dell, J. Phys. Chem. 59, 746 (1955).Google Scholar
  17. [17]
    G. D. Halsey, J. Am. Chem. Soc. 73, 2693 (1951); 74, 1082 (1952).Google Scholar
  18. [18]
    A. V. Kiselev and E. V. Khrapova, Bull. Acad. Sci. USSR, Div. Chem. Sci. 389 (1958).Google Scholar
  19. [19]
    R. A. Beebe and D. M. Young, J. Phys. Chem. 58, 95 (1954).Google Scholar
  20. [20]
    C. H. Amberg, W. B. Spenser, and R. A. Beebe, Canad. J. Chem. 33, 305 (1955).Google Scholar
  21. [21]
    R. A. Beebe, M. H. Polley, W. R. Smith, and C. B. Wendell, J. Am. Chem. Soc. 69, 2294 (1947).Google Scholar
  22. [22]
    J. W. Ross and R. J. Good, J. Phys. Chem. 60, 1167 (1956).Google Scholar
  23. [23]
    N. N. Avgul', G. I. Berezin, A. V. Kiselev, and I. A. Lygina, J. Phys. Chem. 30, 2106 (1956).Google Scholar
  24. [24]
    N. N. Avgul', G. I. Berezin, A. V. Kiselev, and I. A. Lygina, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1304 (1956); 1021 (1957); 787 (1959).Google Scholar
  25. [25]
    N. N. Avgul', Surface Chemical Compounds and Their Role in Adsorption Phenomena, Pub, MGU (1957), p. 34.Google Scholar
  26. [26]
    P. H. Emmett and R. B. Andersen, J. Am. Chem. Soc. 67, 1492 (1945).Google Scholar
  27. [27]
    C. Pierce and R. N. Smith, J. Phys. Coll. Chem. 54, 795 (1950).Google Scholar
  28. [28]
    C. Pierce, R. N. Smith, J. W. Willey, and H. Cordes, J. Am. Chem. Soc. 73, 4551 (1951).Google Scholar
  29. [29]
    N. N. Avgul', O. M. Dzhigit, and A. V. Kiselev, Proc. Acad. Sci. USSR 86, 95 (1952).Google Scholar
  30. [30]
    N. N. Avgul', O. M. Dzhigit, A. V. Kiselev, and K. D. Shcherbakova, Proc. Acad. Sci. USSR 92, 105 (1953).Google Scholar
  31. [31]
    B. Millard, E. G. Gaswell, E. E. Leger, and D. R. Mills, J. Phys. Chem. 59, 976 (1955).Google Scholar
  32. [32]
    G. J. Young, J. J. Chessick, F. H. Healey, and A. C. Zettlemoyer, J. Phys. Chem. 58, 313 (1954).Google Scholar
  33. [33]
    A. V. Kiselev and N. V. Kovaleva, J. Phys. Chem. 30, 2775 (1956).Google Scholar
  34. [34]
    A. V. Kiselev, N. V. Kovaleva, V. A. Sinitsin, and E. V. Khrapova, Colloid J. 20, 444 (1958).Google Scholar
  35. [35]
    N. N. Avgul', O. M. Dzhigit, A. V. Kiselev, and K. D. Shcherbakova, Proc. Acad. Sci. USSR 92, 1185 (1953).Google Scholar
  36. [36]
    C. Pierce and R. N. Smith, J. Phys. Coll. Chem. 54, 374 (1950).Google Scholar
  37. [37]
    B. Millard, R. A. Beebe, and J. Cynarsky, J. Phys. Chem. 58, 468 (1954).Google Scholar
  38. [38]
    P. A. Tessner and M. M. Polyakova, Proc. Acad. Sci. USSR 93, 855 (1953).Google Scholar
  39. [39]
    R. B. Anderson and P. H. Emmett, J. Phys. Chem. 56, 756 (1952).Google Scholar
  40. [40]
    R. M. Dell and R. A. Beebe, J. Phys. Chem. 59, 754 (1955).Google Scholar
  41. [41]
    V. P. Dreving, A. V. Kiselev, and Yu. A. El'tekov, Proc. Acad. Sci. USSR 86, 95 (1952).Google Scholar
  42. [42]
    H. L. McDermot, and L. C. Arnell, J. Phys. Chem. 58, 492 (1954).Google Scholar
  43. [43]
    N. N. Avgul', G. I. Berezin, A. V. Kiselev, I. A. Lygina, and G. G. Muttik, J. Phys. Chem. 31, 1111 (1957).Google Scholar
  44. [44]
    A. V. Kiselev, Proc. Acad. Sci. USSR 106, 1046 (1956).Google Scholar
  45. [45]
    N. Smith, C. Pierce, and H. Cordes, J. Am. Chem. Soc. 72, 5595 (1950).Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1960

Authors and Affiliations

  • A. V. Kiselev
    • 1
  • N. V. Kovaleva
    • 1
  1. 1.Institute of Physical Chemistry of the Academy of Sciences of the USSRUSSR

Personalised recommendations