Skip to main content
Log in

Thermal fracture of functionally gradient ceramics

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

An edge crack in a strip of functionally gradient ceramics (FGC) is studied under thermal loading conditions. Two FGC materials are considered, i.e., one with a spatial variation of shear modulus and the other with a spatial variation of thermal conductivity. Thermal stress intensity factors (TSIF) are numerically calculated based on singular integral equations derived for the dislocation density along the crack faces. It is shown that: (a) for the FGC with a graded shear modulus, the TSIF are reduced for crack lengths longer thanl c b and remain approximately the same as those of a homogeneous material for shorter crack lengths, wherel c is about 0.065 andb is the width of the strip; and (b) for the FGC with a thermal conductivity gradient, the TSIF are generally lower compared with those for the bonded two-layer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Koizumi,The Concept of FGM. InCeramic Transactions, Vol. 34: Functionally Gradient Materials, ed. by J. B. Holt et al., American Ceramic Society, Westerville, Ohio 1993, pp. 3–10.

    Google Scholar 

  2. D. P. H. Hasselman and G. E. Youngblood,Enhanced thermal stress resistance of structural ceramics with thermal conductivity gradient, J. Am. Ceram. Soc.61, 49 (1978).

    Google Scholar 

  3. K. Satyamurthy, D. P. H. Hasselman, J. P. Singh and M. P. Kamat, Effect of spatial variation of thermal conductivity on magnitude of tensile thermal stresses in brittle materials subjected to convective heating. InThermal Stresses in Severe Environments, ed. D. P. H. Hasselman and R. A. Heller. Plenum Press, New York 1990, pp. 325–342.

    Google Scholar 

  4. N. Noda and T. Tsuji,Steady thermal stresses in a plate of a functionally gradient material. InProc. 1st Int. Symp. on Functionally Gradient Materials, ed. by M. Yamanouchi, M. Koizumi, T. Hirai and I. Shiota, Sendai, Japan 1990, pp. 339–344.

  5. Y. Arai, H. Kobayashi and T. Tamura,Elastic-plastic thermal stress analysis for optimum design of FGM. InProc. 4th National Symp. on Functionally Gradient Materials (FGM'91), Functionally Gradient Materials Forum, Kawasaki, Japan 1991, pp. 19–30.

  6. J. T. Drake, R. L. Williamson and B. H. Rabin,Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces, Part II: Interface optimization for residual stress reduction, J. Appl. Phys.74, 1321–1326 (1993).

    Google Scholar 

  7. Proceedings, 1st Int. Symp. on Functionally Gradient Materials, ed. by M. Yamanouchi, M. Koizumi, T. Hirai and I. Shiota, Sendai, Japan 1990.

  8. Proceedings, FGM'91–93, Functionally Gradient Materials Forum, Tokyo, Japan.

  9. A. Kawasaki and R. Watanabe,Thermal shock fracture mechanism of metal-ceramic functionally gradient materials. InThermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, ed. by G. A. Schneider and G. Petzow, Kluwer Academic Publ., Dordrecht 1993, pp. 509–520.

    Google Scholar 

  10. H. Takahashi, T. Ishikawa, D. Okugawa and T. Hashida,Laser and plasma-ARC thermal shock/fatigue fracture evaluation procedure for functionally gradient materials. InThermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, ed. by G. A. Schneider and G. Petzow, Kluwer Academic Publ., Dordrecht 1993, pp. 543–554.

    Google Scholar 

  11. C. Atkinson and R. D. List,Steady state crack propagation into media with spatially varying elastic properties, Int. J. Engng Sci.16, 717–730 (1978).

    Google Scholar 

  12. R. S. Dhaliwal and B. M. Singh,On the theory of elasticity of a non-homogeneous medium, J. Elasticity8, 211–219 (1978).

    Google Scholar 

  13. F. Delale and F. Erdogan, The crack problem for a nonhomogeneous plane, ASME J. Appl. Mech.50, 609–614 (1983).

    Google Scholar 

  14. Z.-H. Jin and N. Noda,An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading, Int. J. Engng Sci.31, 793–806 (1993).

    Google Scholar 

  15. N. Noda and Z.-H. Jin,Thermal stress intensity factors for a crack in a strip of a functionally gradient material, Int. J. Solids Struct.30, 1039–1056 (1993).

    Google Scholar 

  16. F. Erdogan and B. H. Wu,Analysis of FGM specimens for fracture toughness testing. InCeramic Transactions, Vol. 34: Functionally Gradient Materials, ed. by J. B. Holt et al. American Ceramic Society, Westerville, Ohio 1993, pp. 39–46.

    Google Scholar 

  17. Z.-H. Jin and N. Noda,Transient thermal stress intensity factors for a crack in a semi-infinite plane of a functionally gradient material, Int. J. Solids Struct.31, 203–218 (1994).

    Google Scholar 

  18. Z.-H. Jin and N. Noda,Crack-tip singular fields in nonhomogeneous materials, ASME J. Appl. Mech.61, 738–740 (1994).

    Google Scholar 

  19. The CRC Materials Science and Engineering Handbook, eds. J. F. Shackelford and W. Alexander, CRC Press, Boca Raton, FL 1992.

    Google Scholar 

  20. R. Warren,Overview, in Ceramic-Matrix Composites, ed. R. Warren, Blackie, Glasgow 1992.

    Google Scholar 

  21. J. C. Smith,Simplification of van der Poel's formula for the shear modulus of a particulale composite, J. Research Natl. Bureau of Standards-A. Physics & Chemistry79A, 419–423 (1975).

    Google Scholar 

  22. R. M. Christensen and K. H. Lo,Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids27, 315–330 (1979).

    Google Scholar 

  23. N. I. Muskhelishvili,Singular integral equations, Noordhoff, Groningen 1953.

    Google Scholar 

  24. G. D. Gupta and F. Erdogan,The problem of edge cracks in an infinite strip, ASME J. Appl. Mech.41, 1001–1006 (1974).

    Google Scholar 

  25. A. C. Kaya and F. Erdogan,On the solution of integral equations with strongly singular kernels, Quart Appl. Math.45, 105–122 (1987).

    Google Scholar 

  26. A. F. Emery, G. E. Walker, Jr. and J. A. Williams,A Green's function for the stress intensity factors of edge cracks and its application to thermal stresses, ASME J. Basic Engng91, 618–624 (1969).

    Google Scholar 

  27. H. F. Nied,Thermal shock fracture in edge-cracked plate, J. Thermal Stresses6, 217–219 (1983).

    Google Scholar 

  28. A. E.-F. A. Rizk and S. F. Radwan,Fracture of a plate under transient thermal stress, J. Thermal Stresses16, 79–102 (1993).

    Google Scholar 

  29. X. R. Wu,Application of weight function method for crack analysis in thermal stress fields. InThermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, ed. by G. A. Schneider and G. Petzow, Kluwer Academic Publ., Dordrecht 1993, pp. 119–141.

    Google Scholar 

  30. Z. Hashin and S. Shtrikman,A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys.33, 3125 (1962).

    Google Scholar 

  31. R. M. Christensen,Mechanics of Composite Materials, John Wiley & Sons, New York 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z.H., Mai, Y.W. Thermal fracture of functionally gradient ceramics. Z. angew. Math. Phys. 47, 467–484 (1996). https://doi.org/10.1007/BF00916650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916650

Keywords

Navigation