Inflammation

, Volume 9, Issue 3, pp 321–331 | Cite as

Cytolytic effect of polylysine on rabbit polymorphonuclear leukocytes

  • J. G. R. Elferink
Original Articles

Abstract

The cationic polyamino acids polylysine and polyarginine cause a time and concentration dependent lysis of rabbit polymorphonuclear leukocytes. Lysis, measured as LDH release, is preceded by exocytosis, as can be deduced from a higher lysozyme release than LDH release, at short incubation time or with low concentrations of polylysine. The lytic effect of polylysine could be annihilated with the polyanion polyglutamic acid. Monomeric lysine or arginine, or low-molecular-weight polysine, were not lytic. This indicates that positive charges on a polymeric molecule of sufficient chain length play a predominant role in the interaction. Substances that promote exocytosis cause an increase of lysozyme release and a reduction of LDH release, whereas inhibitors of exocytosis cause the reverse: less lysozyme release and more LDH release. Negatively charged sialic groups on the plasma membrane are not important for the interaction, because their removal does not affect the lytic effect of polylysine on the cell. The possibility that the lipid part of the plasma membrane is the point of attack for the polycations is discussed.

Keywords

Lysine Arginine Chain Length Lysozyme Polymeric Molecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katchalski, E., M. Sela, H. I. Silman, andA. Berger. 1964. Polyamino acids as protein models.In Th Proteins, Vol. II. H. Neurath, editor. Academic Press, New York. 406–402.Google Scholar
  2. 2.
    Odeberg, H., andI. Olsson. 1975. Antibacterial activity of cationic proteins from human granulocytes.J. Clin. Invest. 56:1118–1124.Google Scholar
  3. 3.
    Zeya, H. I., andJ. K. Spitznagel. 1968. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity.J. Exp. Med. 127:927–941.Google Scholar
  4. 4.
    Antohi, S., andV. Brumfeld. 1984. Polycation-cell surface interactions and plasma membrane compartments in mammals. Interference of oligocations with polycationic condensation.Z. Naturforsch. 39c:767–775.Google Scholar
  5. 5.
    Gleich, G. J., E. Frigas, D. A. Loegering, D. L. Wassom, andD. Steinmuler. 1979. Cytotoxic properties of the eosinophil major basic protein.J. Immunol. 123:2925–2927.Google Scholar
  6. 6.
    Clark, R. A., I. Olsson, andS. J. Klebanoff. 1976. Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules.J. Cell Biol. 70:719–723.Google Scholar
  7. 7.
    De Vries, A., J. Slago, Y. Mathot, A. Nevo, andE. Katchalsky. 1955. The effect of polyamino acids on phagocytosis in vitro.Arch. Int. Pharmacodyn. 104:1–10.Google Scholar
  8. 8.
    Elsbach, P. andJ. Weiss. 1983. A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytes.Rev. Infect. Dis. 5:843–853.Google Scholar
  9. 9.
    Janoff, A., S. Schaefer, J. Scherer, andM. A. Bean. 1965. Mediators of inflammation in leukocyte lysosomes. II. Mechanism of action of lysosomal cationic protein upon vascular permeability in the rat.J. Exp. Med. 122:841–851.Google Scholar
  10. 10.
    Janoff, A., andB. W. Zweifach. 1964. Production of inflammatory changes in the microcirculation by cationic proteins extracted from lysosomes.J. Exp. Med. 120:747–762.Google Scholar
  11. 11.
    Baker, P. J., T. F. Lint, J. Siegel, M. W. Kies, andH. Gewurz. 1976. Potentiation of C56-initiated lysis by leukocyte cationic proteins, myelin basic proteins and lysine-rich histones.Immunology 30:467–473.Google Scholar
  12. 12.
    Ennis, M., F. L. Pearce, andP. M. Weston. 1980. Some studies on the release of histamine from mast cells stimulated with polylysine.Brit. J. Pharmacol. 70:329–334.Google Scholar
  13. 13.
    Foreman, J. C., andL. M. Lichtenstein. 1980. Induction of histamine secretion by polycations.Biochim. Biophys. Acta 629:587–603.Google Scholar
  14. 14.
    Deierkauf, F. A., H. Beukers, M. Deierkauf, andJ. C. Riemersma. 1977. Phagocytosis by rabbit polymorphonuclear leukocytes: The effect of albumin and polyamino acids on latex uptake.J. Cell. Physiol. 92:169–175.Google Scholar
  15. 15.
    Peterson, P. K., G. Gekker, R. Shapiro, M. Frieberg, andW. F. Keane. 1984. Polyamino acid enhancement of bacterial phagocytosis by human polymorphonuclear leukocytes and peritoneal macrophages.Infect. Immunity 43:561–566.Google Scholar
  16. 16.
    Pruzanski, W., andS. Saito. 1978. The influence of natural and synthetic cationic substances on phagocytic activity of human polymorphonuclear cells.Exp. Cell Res. 117:1–13Google Scholar
  17. 17.
    Ginsburg, I., M. N. Sela, A. Morag, Z. Ravid, Z. Duchan, M. Ferne, S. Rabinowitzbergner, P. P. Thomas, P. Davies, J. Nichols, J. Humes, andR. Bonney. 1981. Role of leukocyte factors and cationic polyelectrolytes in phagocytosis of group A streptococci andCandida albicans by neutrophils, macrophages, flbroblasts and epithelial cells.Inflammation 5:289–312.Google Scholar
  18. 18.
    Ginsburg, I., R. Borinsky, M. Lakav, Y. Matzner, I. Eliaoson, P. Christensen andD. Malamud. 1984. Poly-L-arginine and N-formylated chemotactic peptide act synergistically with lectin and calcium ionophore to induce intense chemiluminescence and superoxide production in human blood leukocytes.Inflammation 8:1–26.Google Scholar
  19. 19.
    Elferink, J. G. R., andM. Deierkauf. 1984. Inhibition of polymorphonuclear leukocyte function of chlortetracycline.Biochem. Pharmacol. 33:3667–3673.Google Scholar
  20. 20.
    Shugar, D. 1952. The measurement of lysozyme activity and the ultraviolet inactivation of lysozyme.Biochim. Biophys. Acta 8:302–309.Google Scholar
  21. 21.
    Elferink, J. G. R. 1979. Chlorpromazine inhibits phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes.Biochem. Pharmacol. 28:965–968.Google Scholar
  22. 22.
    Cormier, S. M. 1984. Exocytotic and cytolytic release of histamine from mast cells treated with Portuguese man-of-war (Physalia physalis) venom.J. Exp. Zool. 231:1–10.Google Scholar
  23. 23.
    Henson, P. M., andZ. G. Oades. 1973. Enhancement of immunologically induced granule exocytosis from neutrophils by cytochalasin B.J. Immunol. 110:290–293.Google Scholar
  24. 24.
    Elferink, J. G. R., andJ. C. Riemersma. 1981. The effect of cytochalasin A on polymorphonuclear leukocytes activated by chemotactic peptide.J. Recticuloendothel. Soc. 29:163–171.Google Scholar
  25. 25.
    Showell, H. J., P. H. Naccache, R. I. Sha'afi, andE. L. Becker. 1977. The effect of extracellular K+, Na+ and Ca2+ on lysosomal enzyme secretion from polymorphonuclear leukocytes.J. Immunol. 119:804–811.Google Scholar
  26. 26.
    Goldstein, I. M., G. Weissmann, P. B. Dunham, andR. Soberman. 1975. The role of calcium in secretion of enzymes by human polymorphonuclear leukocytes.In Calcium transport in contraction and secretion. E. Carafoli, editor. North Holland Publishing Co., Amsterdam, 1975. 185–193.Google Scholar
  27. 27.
    Smolen, J. E., H. M. Korchak, andG. Weissmann. 1981. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils.Biochim. Biophys. Acta 677:512–520.Google Scholar
  28. 28.
    Elferink, J. G. R., andJ. C. Riemersma. 1983. Hydroxyapatite crystal-induced membrane damage in granulocytes and erythrocytes.Agents Actions 13:515–516.Google Scholar
  29. 29.
    Gad, A. E., B. L. Silver, andG. D. Eytan. 1982. Polycation-induced fusion of negatively charged vesicles.Biochim. Biophys. Acta 690:124–132.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • J. G. R. Elferink
    • 1
  1. 1.Department of Medical Biochemistry Sylvius LaboratoriesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations