Explanation of the Toms effect in terms of the viscosity anisotropy of the solution

  • G. F. Kobets


Viscosity Anisotropy Mathematical Modeling Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Toms, “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds number,” Proc. 1-st Inter. Rheol. Congr. 1948, Holland, North Holland Publishing Co., Amsterdam, 1949.Google Scholar
  2. 2.
    D. W. Dodge and A. B. Metzner, “Turbulent flow of non-Newtonian systems,” A. J. Ch. E. Journal., vol. 5, no. 2, 1959.Google Scholar
  3. 3.
    R. G. Shaver and E. M. Merrill, “Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes,” A. J. Ch. E. Journal, vol. 5, no. 2, 1959.Google Scholar
  4. 4.
    A. B. Metzner and M. G. Park, “Turbulent flow characteristics of viscoelastic fluids,” J. Fluid Mech., vol. 20, no. 2, 1964.Google Scholar
  5. 5.
    A. G. Fabula, “The Toms phenomenon in the turbulent flow of very dilute polymer solutions,” Proc. 4-th Internat. Congr. Rheol., 1963, pt. 3, New York-London-Sydney, Interscience, 1965.Google Scholar
  6. 6.
    J. W. Hoyt and A. G. Fabula, “The effect of additives on fluid friction,” 5-th Sympos. Naval. Hydrodynam. Ship Motions and Drag Reduct., Bergen, 1964, Washington, D. C., Office Naval Res. -Dept. Navy, 1966.Google Scholar
  7. 7.
    G. F. Kobets, V. S. Zav'yalova, and M. L. Komarova, “Effect of fish mucus on turbulent flow,” collection: Hydrodynamic Problems of Bionics [in Russian], Kiev, 1968.Google Scholar
  8. 8.
    A. J. Bobkowicz and W. G. Gauvin, “The turbulent flow characteristics of model fibre suspensions,” Canad. J. Chem. Engng., vol. 43, no. 2, 1965.Google Scholar
  9. 9.
    C. Elata, J. Lehrer, and A. Kahanovitz, “Turbulent shear flow of polymer solutions,” Israel J. Technology, vol. 4, no. 1, 1966.Google Scholar
  10. 10.
    D. N. Jackley, “Drag-reducing fluids in a free turbulent jet,” Internat. Shipbuild. Prog, vol. 14, no. 152, 1967.Google Scholar
  11. 11.
    F. A. Seyer and A. B. Metzner, “Turbulent flow properties of viscoelastic fluids,” Canad. J. Chem. Eng., vol. 45, no. 3, 1967.Google Scholar
  12. 12.
    G. F. Kobets, “The mechanism of the effect of dissolved macromolecules on a turbulent flow,” collection: Hydrodynamic Problems of Bionics [in Russian], Kiev, 1968.Google Scholar
  13. 13.
    V. N. Tsvetkov, V. E. Eskin, and S. Ya. Frenkel, Structure of Macromolecules in Solutions [in Russian], Nauka Moscow, 1964.Google Scholar
  14. 14.
    V. Kuhn, H. Kuhn, and P. Buchner, “Hydrodynamiches Verhalten von Makromolekülen in Lösungen, Ergebn. exakt. Naturwiss, 25, 1951.Google Scholar
  15. 15.
    E. M. Khabakhpasheva and B. V. Perepelitsa, “Fields of velocities and turbulent pulsations that occur when small amounts of high-molecular substances are added to water,” Inzh-fiz. zh. [Journal of Engineering Physics], vol. 14, no. 4, 1968.Google Scholar
  16. 16.
    J. O. Hinze, Turbulence [Russian translation], Fizmatgiz, Moscow, 1963.Google Scholar
  17. 17.
    H. Schlichting, Boundary Layer Theory [Russian translation], Izd-vo inostr. lit., Moscow, 1956.Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • G. F. Kobets
    • 1
  1. 1.Novosibirsk

Personalised recommendations