Skip to main content
Log in

Generalized shock hugoniot of condensed substances

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

It is shown that in order to predict the shock Hugoniot of any substance up to a compression ratio equal to two it is sufficient to know the initial density and the initial compressibility. The possibility of finding a priori the equations of state of nonporous mixtures of two substances, porous samples, and solutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Gogolev, V. G. Myrkin, and G. I. Yablokova, “Approximate equation of state of solids,” PMTF, vol. 5, p. 93, 1963.

    Google Scholar 

  2. A. N. Afanasenkov, V. M. Bogomolov, and I. M. Voskoboinikov, Fiz. goreniya i vzryva [Combustion, Explosion, and Shock Waves], vol. 4, p. 585, 1967.

    Google Scholar 

  3. M. H. Rice, “Pressure-volume relations for the alkali metals from shock-wave measurements,” J. Phys. Chem. Solids, vol. 26, no. 3, p. 483, 1965.

    Google Scholar 

  4. A. A. Bakanova, I. P. Dudoladov, and R. F. Trunin, “Compression of alkali metals by strong shocks,” Fizika tverdogo tela, vol. 7, no. 6, p. 1615, 1965.

    Google Scholar 

  5. R. J. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys., vol. 31, no. 7, p. 1253, 1960.

    Google Scholar 

  6. L. Bergmann, Ultrasonics [Russian translation], IL, Moscow, 1957.

    Google Scholar 

  7. V. S. Ilyukhin, P. F. Pokhil, O. K. Rozanov, and N. S. Shvedova, “Measurement of the shock Hugoniots of cast TNT, crystalline RDX, and nitromethane,” DAN SSSR, vol. 131, no. 4, p. 793, 1960.

    Google Scholar 

  8. J. M. Walsh, M. H. Rice, R. J. McQueen, and F. L. Yarger, “Shock wave compression of twenty-seven metals,” Equation of State of Metals, Phys. Rev., vol. 108, no. 2, p. 196, 1957.

    Google Scholar 

  9. L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, “Equations of state of aluminum, copper, and lead for the high-pressure region,” ZhÉTF, vol. 38, no. 3, p. 790, 1960.

    Google Scholar 

  10. J. M. Walsh and M. H. Rice, “Dynamic compression of liquids from measurements on strong shock waves,” J. Chem. Phys., vol. 26, no. 4, p. 817, 1957.

    Google Scholar 

  11. L. V. Al'tshuler, A. A. Bakanova, and R. F. Trunin, “Shock Hugoniots and zero isotherms of seven metals at high pressures,” ZhÉTF, vol. 42, no. 1, p. 91, 1962.

    Google Scholar 

  12. M. A. Cook, L. A. Rogers, “Compressibility of solids and liquids at high pressures,” J. Appl. Phys., vol. 34, no. 8, p. 2330, 1963.

    Google Scholar 

  13. M. Van Thiel, “Compendium of shock wave data,” Univ. California, Livermore, 1966.

    Google Scholar 

  14. R. Rao, “Velocity of sound in liquids and chemical constitution,” J. Chem. Phys., vol. 9, no. 9, p. 682, 1941.

    Google Scholar 

  15. A. N. Dremin and I. A. Karpukhin, “Method of determining the shock Hugoniots of dispersed substances,” PMTF, no. 3, 184, 1960.

    Google Scholar 

  16. N. L. Coleburn and T. P. Lidiard, “Hugoniot equation of state of several unreacted explosives,” J. Chem. Phys., vol. 44, no. 5, p. 1929, 1966.

    Google Scholar 

  17. V. H. Boyle, R. L. Jameson, and F. E. Allison, “Pressure measurements during shock initiation of composition,” B. 10th Sympos. (Internat.) on Combustion, Pittsburgh, Pennsylvania, 1965.

  18. S. B. Kormer, M. V. Sinitsin, A. I. Funtikov, V. D. Urlin, and A. V. Blinov, “Investigation of the compressibility of five ionic compounds to pressures of 5 mbars,” ZhÉTF, vol. 47, no. 4(10), p. 1202, 1964.

    Google Scholar 

  19. J. Thouvenin, “Effect of a shock wave on a porous solid,” 4th Sympos. (Internat.) on Detonation, Oct. 12–15, 1965, US Naval Ordnance Laboratory, White Oak, Maryland.

    Google Scholar 

  20. J. Natta and M. Baccaredda, “Sulla velocita di propagazione degliultrasuoni nelle miscele ideali,” Atti Accad. Nazionale di Lincei Roma, no. 4, p. 360, 1948.

    Google Scholar 

  21. O. Nomoto, “Empirical formula for sound velocity in liquid mixtures,” J. Phys. Soc. Japan, vol. 13, no. 12, p. 1528, 1958.

    Google Scholar 

  22. I. G. Mikhailov, “Velocity of ultrasonic waves in aqueous mixtures of certain organic liquids,” DAN SSSR, vol. 31, p. 324, 1941.

    Google Scholar 

  23. V. F. Nozdrev, Applications of Ultrasonics in Molecular Physics [in Russian], Fizmatgiz, Moscow, p. 385, 1958.

    Google Scholar 

  24. A. N. Dremin and O. K. Rozanov, “Measurement of the shock Hugoniots of nitromethane-acetone mixtures,” Izv. AN SSSR, Ser. khim. nauk, vol. 8, p. 1513, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanasenkov, A.N., Bogomolov, V.M. & Voskoboinikov, I.M. Generalized shock hugoniot of condensed substances. J Appl Mech Tech Phys 10, 660–664 (1969). https://doi.org/10.1007/BF00916231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916231

Keywords

Navigation