Skip to main content
Log in

Theory of gravitational stability of a rotating cylinder

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The stability of a rotating dust cylinder against perturbations located in the plane perpendicular to the axis of rotation is investigated. It is shown that a homogeneous rotating cylinder containing a weak inhomogeneity is stable against such perturbations. A weakly inhomogeneous cylinder with opposite streams of equal density is unstable for thel=2 mode in the case of a perturbation of the form∼ei(lϕ−ωt), when the density increases radially. The instability of a system consisting of a homogeneous rotating dust cylinder in a hot homogeneous medium is determined. It is shown that the maximum growth rate corresponds tol = 2 when the density of a cold cylinder is not negligible in comparison with the density of the medium. In the opposite case, the maximum growth rate shifts toward l=3. An attempt is made to associate the existence of the maximum growth rate for l=2 with the presence of two spiral arms in most galaxies. It is shown that, when the longitudinal temperature is high enough, a rotating cylinder which is bounded in the radial direction is stable against arbitrary perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. J. H. Jeans, Astronomy and Cosmology, Cambridge Univ. Press, 1928.

  2. W. B. Bonnor, “Jeans formula for gravitational instability,” in: Relativity Theory and Astrophysics, Prov. Amer. Math, Soc., vol. 1, 1967.

  3. Ya. B. Zel'dovich and I. D. Novikov, Relativistic Astrophysics [in Russian], Nauka, Moscow, 1967.

    Google Scholar 

  4. P. Sweet, “Cooperative phenomena in stellar dynamics,” Month.Not.Roy. Astron. Soc., vol. 125, no. 3–4, p. 285, 1963.

    Google Scholar 

  5. D. Lynden-Bell, “The stability and vibrations of a gas of stars,” Month. Not. Roy. Astron. Soc., vol. 124, no. 4, p. 279, 1962.

    Google Scholar 

  6. M. N. Maksumov and L. S. Marochnik, “Critical wavelength in collisionless gravitating systems,” Dokl. AN SSSR, vol. 164, no. 5, p. 1019, 1965.

    Google Scholar 

  7. V. I. Lebedev, M. N. Maksumov, and L. S. Marochnik, “Collective processes in gravitating systems, I,” Astron. zh., vol. 42, no. 4, p. 709, 1965.

    Google Scholar 

  8. M. N. Maksumov and L. S. Marochnik, “Collective processes in gravitating systems, II,” Astron. zh., vol. 42, no. 6, p. 1261, 1965.

    Google Scholar 

  9. L. S. Marochnik, “Dynamics of collisionless gravitating systems,” collection: Many-Body Problems and Plasma Physics, Proceedings of International Symposium [in Russian], Nauka, Novosibirsk, 1967.

    Google Scholar 

  10. L. S. Marochnik and N. T. Ptitsyna, “Gravitational instability of rotating anisotropic stellar systems,” Astron. zh., vol. 45, no. 3, p. 516, 1968.

    Google Scholar 

  11. E. P. Lee, “Suppression of Jeans instability in collisionless media,” Astrophys. J., vol. 148, no. 1, p. 185, 1967.

    Google Scholar 

  12. C. S. Wu, “Stability of density waves in a self-gravitating stellar system with uniform rotation,” Phys. Fluids, vol. 11, no. 3, p. 545, 1968.

    Google Scholar 

  13. D. Lynden-Bell, “Cooperative phenomena in stellar dynamics,” in: Relativity Theory and Astrophysics, Prov. Amer. Math. Soc., vol. 2, 1967.

  14. V. A. Antonov, “Note on the instability problem in stellar dynamics,” Astron. zh., vol. 37, no. 5, p. 918, 1960.

    Google Scholar 

  15. G. S. Bisnovatyi-Kogan, Ya. B. Zel'dovich, and A. M. Fridman, “Stability of bodies of revolution against radial perturbations,” Dokl. AN SSSR, vol. 182, no. 4, 1968.

  16. A. V. Timofeev, “Resonance phenomena in plasma and liquid flows,” Preprint In-ta Atomnoi Energii AN SSSR, no. 1570, 1968.

  17. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow, 1962.

    Google Scholar 

  18. K. P. Stanyukovich, Non-Steady-State Motion of a Continuous Medium [in Russian], Gostekhteoretizdat, Moscow, 1965.

    Google Scholar 

  19. L. D. Landau, “Oscillations of electron plasma,” ZhETF, vol. 16, no. 7, p. 574, 1946.

    Google Scholar 

  20. V. D. Shafranov, “Electromagnetic waves in plasma,” collection: Problems of Plasma Theory, vol. 3, [in Russian], Atomizdat, Moscow, 1963.

    Google Scholar 

  21. L. S. Marochnik, “Hydrodynamics of rotating stellar systems,” Astron. zh., vol. 43, no. 5, p. 919, 1966.

    Google Scholar 

  22. I. N. Bronshtein and K. A. Semendyaev, Mathematics Handbook [in Russian], Nauka, Moscow, 1964.

    Google Scholar 

  23. O. Struve and V. Zebergs, Astronomy of the Twentieth Century [Russian translation], Mir, Moscow, 1968.

    Google Scholar 

  24. C. C. Lin and F. H. Shu, “On the spiral structure of disk galaxies,” Astrophys. J., vol. 140, no. 2, p. 646, 1964.

    Google Scholar 

  25. L. S. Marochnik and A. A. Suchkov, “Wave nature of the spiral structure of galaxies,” Preprints nos. 1–4, In-ta astrofiziki AN TadZhSSR, 1968, Astron. zh., vol. 46, no. 2, p. 319, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol.10, No. 3, pp. 3–11, May–June, 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisnovatyi-Kogan, G.S., Zel'dovich, Y.B., Sagdeev, R.Z. et al. Theory of gravitational stability of a rotating cylinder. J Appl Mech Tech Phys 10, 333–341 (1969). https://doi.org/10.1007/BF00916158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916158

Keywords

Navigation