Journal of Applied Mechanics and Technical Physics

, Volume 27, Issue 5, pp 682–689 | Cite as

Variational model of organized vorticity in plane flow

  • Yu. N. Grigor'ev
  • V. B. Levinskii


Mathematical Modeling Mechanical Engineer Vorticity Industrial Mathematic Variational Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. J. Cantwell, “Organized motion in turbulent flow,” in: Annual Rev. Fluid Mech., Palo Alto (1981).Google Scholar
  2. 2.
    G. M. Corcos and F. S. Sherman, “The mixing layer: deterministic model of a turbulent flow. Part 1. Introduction and two-dimensional flow,” J. Fluid Mech.,139 (1984).Google Scholar
  3. 3.
    D. W. Moore and P. G. Saffman, “The density of organized vortices in a turbulent mixing layer,” J. Fluid Mech.,69, No. 3 (1975).Google Scholar
  4. 4.
    P. G. Saffman and R. Szeto, “Equilibrium shapes of a pair of equal uniform vortices,” Phys. Fluids,23, No. 12 (1980).Google Scholar
  5. 5.
    J. H. Ferziger, “Energetics of vortex rollup and pairing,” Phys. Fluids,23, No. 1 (1980).Google Scholar
  6. 6.
    H. Aref and E. D. Siggia, “Vortex dynamics of the two-dimensional turbulent shear layer,” J. Fluid Mech.,100, No. 4 (1980).Google Scholar
  7. 7.
    G. A. Kuz'min, O. A. Likhachev, and A. Z. Patashinskii, “Structures and their evolution in turbulent shear layers,” Preprint INP, Sib. Branch, Academy of Sciences of the USSR, No. 97 (1981).Google Scholar
  8. 8.
    Yu. N. Grigor'ev and V. B. Levinskii, “Models of coherent vortex structures in free annular shear layers and Lenert-type MHD flow,” ChMMSS,15, No. 5 (1984).Google Scholar
  9. 9.
    T. S. Lundgren and Y. B. Pointin, “Statistical mechanics of two-dimensional vortices,” J. Stat. Phys.,17, No. 5 (1977).Google Scholar
  10. 10.
    J. T. Stuart, “On finite amplitude oscillations in laminar mixing layers,” J. Fluid Mech.,29, No. 3 (1967).Google Scholar
  11. 11.
    G. Haken, Synergism [Russian translation], Mir, Moscow (1980).Google Scholar
  12. 12.
    L. R. Mead and N. Papanicolaou, “Maximum entropy in the problem of moments,” J. Math. Phys.,25, No. 8 (1984).Google Scholar
  13. 13.
    S. Kida, “Statistics of the system of line vortices,” J. Phys. Soc. Jpn.,39, No. 5 (1975).Google Scholar
  14. 14.
    G. A. Kuz'min, “Statistical mechanics of vorticity in a coherent two-dimensional structure,” in: Structured Turbulence [in Russian], ITF, Otd. Akad. Nauk SSSR (1982).Google Scholar
  15. 15.
    V. B. Levinskii and K. I. Il'in, “Modeling of coherent vortex structures in turbulent flow with shear,” in: Modeling of Processes of Hydrogasdynamics and Energetics [in Russian], ITPM, Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1985).Google Scholar
  16. 16.
    J. Batchelor, Introduction to Fluid Dynamics [Russian translation], Mir, Moscow (1973).Google Scholar
  17. 17.
    H. Lamb, Hydrodynamics, 6th edn., Cambridge University Press (1932).Google Scholar
  18. 18.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York (1965).Google Scholar
  19. 19.
    Yu. N. Grigoriev, V. B. Levinski, and N. N. Yanenko, “Modeling of turbulence by ensembles of vortices with inviscid interaction,” Arch. Mech.,36, No. 2 (1984).Google Scholar
  20. 20.
    F. K. Browand and P. D. Weidman, “Large scales in the developing mixing layer,” J. Fluid Mech.,76, Pt. 1 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Yu. N. Grigor'ev
    • 1
  • V. B. Levinskii
    • 1
  1. 1.Novosibirsk

Personalised recommendations