Skip to main content
Log in

Calcium ionophore and chemotactic peptide stimulation of peptidoleukotriene synthesis in DMSO-differentiated HL60 cells

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The human promyelocytic leukemia cell line HL60 can be differentiated to mature granulocytes upon exposure to DMSO (1.3%, 6 days). The ability of these cells to metabolize arachidonic acid via the 5-lipoxygenase pathway to form 5-HETE, LTB4, and 5,12-diHETEs, has been previously documented. However, the production of peptidoleukotrienes by DMSO-differentiated HL60 cells has not been previously reported. Arachidonic acid metabolites produced via 5-lipoxygenase were identified by reverse-phase, high-performance liquid chromatography, immunoreactivity specific for peptidoleukotriene, glutamyl transpeptidase transformation, characteristic UV spectra, and GC mass spectra. Leukotriene synthesis in the DMSO-differentiated HL60 cell is maximal at 5 min when stimulated with the calcium ioniphore, A23187 (1μM), in the presence of calcium. These cells produce 12.94±1.8 ng/106 cells of LTC4 and 3.8±0.4 ng/106 cells of LTB4. LTC4 and LTB4 are also synthesized in the undifferentiated cell when stimulated with 1μM A23187 and 1 mM Ca2+, but in much smaller quantities, i.e., 1.91±0.42 ng/106 cells of LTC4 and 0.41 ng±0.06/106 cells of LTB4. The synthetic chemotactic peptide, f-Met-Leu-Phe, also elicits formation of LTC4 and LTB4 in a dose-dependent manner in the presence of exogenously added calcium. Maximal stimulation of DMSO-differentiated cells with f-Met-Leu-Phe produces 2.5±0.2 ng of LTC4 and 1.45±0.2 ng of LTB4 per 106 cells. The observation that DMSO-differentiated HL60 cells produce LTC4, as well as other 5-lipoxygenase products, increases the utility of this cell line for unraveling the regulation of leukotriene biosynthesis by granulocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, S. J., R. C. Gallo, andR. E. Gallagher. 1977. Continuous growth and differentiation of human myeloid leukemia cells in suspension culture.Nature 270:347.

    Google Scholar 

  2. Bonser, R. W., M. I. Siegel, S. M. Chuno, R. T. McConnell, andP. Cuatrecasas. 1981. Esterification of an endogenously synthesized lipoxygenase product into granulocyte cellular lipids.Biochemistry 20:5297.

    Google Scholar 

  3. Bonser, R. W., M. I. Siegel, R. T. McConnell, andP. Cuatrecasas. 1981. Chemotactic peptide stimulated endogenous arachidonic acid metabolism in HL60 granulocytes.Biochem. Biophys. Res. Commun. 102:1269.

    Google Scholar 

  4. Collins, S. J., F. W. Ruscetti, R. E. Gallagher, andR. C. Gallo. 1978. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds,Proc. Natl. Acad. Sci. U.S.A. 75:2458–2462.

    Google Scholar 

  5. Niedel, J. E., andP. Cuatrecasas. 1980.Curr. Topics Cell. Regul 17:137.

    Google Scholar 

  6. Collins, S. J., F. W. Ruscetti, R. E. Gallagher, andR. C. Gallo. 1979. Normal functional characteristics of cultured promyelocytic leukemia cells (HL60) after induction of differentiation by dimethyl sulfoxide.J. Exp. Med. 149:969.

    Google Scholar 

  7. Newburger, P. E., M. E. Chovaniec, andJ. S. Greenberger. 1979. Specific changes in the surface of human promyelocytic leukemia cell Une HL60 during morphologic and functional differentiation.Proc. Natl. Acad. Sci. U.S.A. 76:4087.

    Google Scholar 

  8. Naccache, P. H., T. F. P. Molski, B. Spinelli, P. Borgeat, andC. N. Abboud. 1984. Development of calcium and secretory responses in the human promyelocytic leukemia cell line HL-60.J. Cell. Physiol. 119:241.

    Google Scholar 

  9. Dougherty, R. W., P. P. Godfrey, P. C. Hoyce, J. W. Putney, andR. J. Freer. 1984. Secretagogue-induced phosphoinositide metabolism in human leukocytes.Biochem. J. 222:307.

    Google Scholar 

  10. Vanderhook, J. Y., R. W. Bryant, andJ. M. Bailey. 1980. Inhibition of leukotriene synthesis by the leukocyte produce 15-hydroxy-5,8,11,13-eicotetraenoic acid.J. Biol. Chem. 255:10064.

    Google Scholar 

  11. Salmon, J. A., P. M. Simmons, andR. M. J. Palmer. 1982. A radioimmunoassay for leukotriene B4.Prostaglandins 124:225.

    Google Scholar 

  12. Radmark, O., C. Malmsten, B. Samuelsson, G. Goto, A. Marfat, andE. J. Corey. 1980. Leukotriene A. Isolation from human polymorphonuclear leukocytes.J. Biol. Chem. 256:11828.

    Google Scholar 

  13. Porter, N. A., R. A. Wolf, E. M. Yarbro, andH. Weenan. 1979. The autooxidation of arachidonic acid: Formation of the proposed SRS-A intermediate.Biochem. Biophys. Res. Commun. 89:1058.

    Google Scholar 

  14. Cochrane, C. G. 1984. Mechanisms coupling stimulation and function in leukocytes.Fed. Proc. 40:2729.

    Google Scholar 

  15. Lee, C. W., R. A. Lewis, E. J. Corey, A. Barton, H. Oh, A. I. Tauber, K. F. Austen. 1982. Oxidation inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes.Proc. Natl Acad. Sci. U.S.A. 79:4166.

    Google Scholar 

  16. Weller, P. F., C. W. Lee, D. W. Foster, E. J. Corey, K. F. Austen, andR. A. Lewis. 1983. Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: Predominant production of leukotriene C4.Proc. Natl. Acad Sci. U.S.A. 80:7626.

    Google Scholar 

  17. Migler, R., andL. R. DeChatelet, 1978. Human eosinophilic peroxidase: Biochemical characterization.Biochem. Med. 19:16.

    Google Scholar 

  18. Hannson, G., andO. Radmark, 1980. Leukotriene C4: Isolation from human polymorphonudear leukocytes.FEBS Lett. 122:87.

    Google Scholar 

  19. Aehringhaus, V., R. H. Wolbling, W. Konig, C. Patrono, B. M. Peskar, andB. A. Peskar. 1982. Release of leukotriene C4 from human polymorphonudear leukocytes as determined by radioimmunoassay.FEBS Lett. 146:111.

    Google Scholar 

  20. Lindgren, J. A., S. Hammarstrom, andE.J. Goetzl. 1983. A sensitive and specific radioimmunoassay for leukotriene C4.FEBS Lett. 152:83.

    Google Scholar 

  21. Jorg, A., N. R. Henderson, R. C. Murphy, andS. J. Klebanoff, 1982. Leukotriene generation by eosinophils.J. Exp. Med. 155:390.

    Google Scholar 

  22. Ford-Hutchinson, A. W., M. A. Bray, M. V. Doig, M. E. Shipley, andM. J. H. Smith, 1980. Leukotriene B4 is a potentent chemokinetic and aggregating substance released from polymorphonudear leukocytes.Nature 286:264.

    Google Scholar 

  23. Drazen, J. M., K. F. Austen, R. A. Lewis, D. A. Clark, G. Goto, A. Marfat, andE. J. Corey, 1980. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro.Proc. Natl. Acad. Sci. U.S.A. 77:4354.

    Google Scholar 

  24. Dahlen, S.-E., J. Bjork, P. Hedquist, K.-E. Arfors, S. Hammarstrom, andB. Samuelsson, 1981. Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary vermies: In vivo effects and relevance to acute inflammatory response.Proc. Natl. Acad. Sci. U.S.A. 78:3887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthes, J.C., Bryant, R.W., Musch, M.W. et al. Calcium ionophore and chemotactic peptide stimulation of peptidoleukotriene synthesis in DMSO-differentiated HL60 cells. Inflammation 10, 145–156 (1986). https://doi.org/10.1007/BF00915996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00915996

Keywords

Navigation