Skip to main content
Log in

Purification and characterization of calpain from human polymorphonuclear leukocytes

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that a calcium-sensitive protease converts Ca2+/phospholipid-dependent protein kinase C to a Ca2+/phospho-lipid-independent form during the activation of human neutrophils. In this paper, the results of the purification and characterization of a calcium-dependent cytosolic protease from neutrophils is reported. Calcium-dependent protease has been purified 1062-fold from human neutrophils and behaves as a single species on native polyacrylamide gels. The protease is active in the neutral pH range with no observable activity at pH values greater than 8.0, has an absolute requirement for calcium for expression of activity with half-maximal activity observed at 12 /μM free calcium, and has an apparent molecular weight of 110,000 based on gel filtration. The protease requires the presence of dithiothreitol for activity and is inhibited by sulfhydryl inhibitors, leupeptin, and antipain but not by serine protease inhibitors, pepstatin, or orthophenanthroline. The protease is also susceptible to inactivation by autoproteolysis. Based on the similarities of this calcium-dependent protease with calpains from a variety of other mammalian tissues, the protease isolated from human neutrophils appears to be a calpain I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooke, E., andM. B. Hallett. 1985.Biochem J. 232:323–327.

    Google Scholar 

  2. Wolfson, M., L. C. McPhail, V. N. Nassallah, andR. Snyderman. 1985.J. Immunol. 135:2057–2062.

    Google Scholar 

  3. Gennuno, R., C. Florio, andD. Romeo. 1986.Biochem. Biophys. Res. Commun. 134:305–312.

    Google Scholar 

  4. Cox, J. A., A. Y. Jeng, N. A. Sharkey, P. M. Blumbero, andA. I. Tauber. 1985.J. Clin. Invest. 76:1932–1938.

    Google Scholar 

  5. Papini, E., M. Grzeskowiak, P. Bellavite, andF. Rossi. 1985.FEBS. Lett. 190:204–208.

    Google Scholar 

  6. Huang, C.-K., J. M. Hill, Jr., J.-M. Borman, W. M. Mackin, andE. L. Becker. 1983.Biochim. Biophys. Acta 670:126–135.

    Google Scholar 

  7. Inoue, M., A. Kishimoto, Y. U. Takai, andY. Nishizuka. 1977.J. Biol. Chem. 252:7610–7616.

    Google Scholar 

  8. Melloni, E., S. Pontremoli, M. Michetti, O. Sacco, B. Sparatore, F. Salamino, andB. L. Horecker. 1985.Proc. Natl. Acad. Sci. U.S.A. 82:6435–6439.

    Google Scholar 

  9. Melloni, E., S. Pontremoli, M. Michette, O. Sacco, B. Sparatore, andB.L. Horecker. 1986.J. Biol. Chem. 261:4101–4105.

    Google Scholar 

  10. Legendre, J. L.., andH. P. Jones. 1983.J. Reticuloendothel. Soc. 34:89–97.

    Google Scholar 

  11. Rice, R., andG. Means. 1971.J. Biol. Chem. 246:831–832.

    Google Scholar 

  12. Bradford, M.. 1976.Anal. Biochem. 72:248–254.

    Google Scholar 

  13. Perrin, D., andI. Sayce. 1967.Talanta 14:833–842.

    Google Scholar 

  14. Kishimoto, A. 1983.J. Biol. Chem. 258:1156–1164.

    Google Scholar 

  15. Pant, H., P. E. Gallant, R. Gould, andH. Gainer. 1982.J. Neurosci. 2:1578–1587.

    Google Scholar 

  16. Murakami, T., M. Hatanaka, andT. Murachi. 1981.J. Biochem. 90:1809–1816.

    Google Scholar 

  17. Suzuki, K. 1983.J. Biochem. 93:1305–1312.

    Google Scholar 

  18. Mellgren, R., A. Repetti, T. C. Muck, andJ. Easly. 1982.J. Biol. Chem. 257:7203–7209.

    Google Scholar 

  19. Yanagisawa, K. 1983.Neurochem. Res. 8:1285–1293.

    Google Scholar 

  20. Yoshimura, N., T. Kikuchi, T. Sasaki, A. Kitahara, M. Hatanaka, andT. Murachi. 1983.J. Biol. Chem. 258:8883–8889.

    Google Scholar 

  21. Wheelock, M. 1982.J. Biol. Chem. 257:12471–12474.

    Google Scholar 

  22. Huston, R., andE. G. Krebs. 1968.Enzyme Biochem. 7:2116–2121.

    Google Scholar 

  23. Dayton, W. R. 1982.Biochim. Biophys. Acta 709:166–172.

    Google Scholar 

  24. DeMartino, G., andD. Blumenthal. 1982.Biochemistry 21:4297–4303.

    Google Scholar 

  25. A. Kitahara, T. Sasaki, T. Kikuchi, N. Yumoto, N. Yoshimura, M. Hatanka, andT. Murachi. 1984.J. Biochem. 95:1759–1766.

    Google Scholar 

  26. Dayton, W., J. V. Schollmeyer, R. A. Lepley, andL. R. Cortes. 1981.Biochim. Biophys. Acta 659:48–61.

    Google Scholar 

  27. Murachi, T., K. Tanaka, M. Hatanaka, andT. Murakami. 1981.Adv. Enzyme Regul. 19:407–424.

    Google Scholar 

  28. Dayton, W. R., W. J. Reville, D. E. Goll, andM. H. Stromer. 1976.Biochemistry 15:2159–2167.

    Google Scholar 

  29. Inomata, M., M. Nomoto, M. Hayashi, M. Nakamura, K. Imahori, andS. Kawashima. 1984.J. Biochem 95:1661–1670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legendre, J.L., Jones, H.P. Purification and characterization of calpain from human polymorphonuclear leukocytes. Inflammation 12, 51–65 (1988). https://doi.org/10.1007/BF00915892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00915892

Keywords

Navigation