, Volume 9, Issue 1, pp 1–7 | Cite as

Acute-phase response of plasma protein synthesis during experimental inflammation in neonatal rats

  • Tim Thomas
  • Gerhard Schreiber
Original Articles


The pattern of plasma protein concentrations in neonatal rats differs characteristically from that in adult animals. Immediately after birth, the concentration of α2-macroglobulin is about 200 times higher, that of major acute-phase α1 protein the same, and that of α1-acid glycoprotein, another acute phase protein, is considerably lower, compared with the values observed in healthy adults. The concentration of prealbumin, a negative acute-phase protein, remains low in the immediate postnatal period, but increases at a time when concentrations of both thyroxine and corticosterone increase. At this time, there is also a distinct increase in the concentration of α1-acid glycoprotein. Despite the differences in concentration of plasma proteins in the adult rat and the neonate, the neonatal liver has the capability to respond to an acute inflammation with a coordinated change in the synthesis rates of plasma proteins similar to that observed in adult animals.


Plasma Protein Corticosterone Thyroxine Adult Animal Acute Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hudig, D., andS. Sell. 1978. Serum concentration of α1-macrofetoprotein (acute phase α2macroglobulin). A proteinase inhibitor in pregnant and neonatal rats and in rats with acute inflammation.Inflammation 3:137–148.Google Scholar
  2. 2.
    Weimer, H. E., C. Humebaugh, andD. M. Roberts. 1967. The α2-AP globulin of maternal and neonatal rat serums.Am. J. Physiol. 213:418–424.Google Scholar
  3. 3.
    Van Gool, J., andN. C. J. J. Ladiges. 1969. Production of foetal globulin after injury in rat and man.J. Pathol 97:115–126.Google Scholar
  4. 4.
    Schreiber, G., G. J. Howlett, M. Nagashima, A. Millership, H. Martin, J. Urban, andL. Kotler. 1982. The acute phase response of plasma protein synthesis during experimental inflammation.J. Biol. Chem. 257:10271–10277.Google Scholar
  5. 5.
    Dickson, P. W., G. J. Howlett, andG. Schreiber. 1982. Metabolism of prealbumin in rats and changes induced by acute inflammation.Eur. J. Biochem. 129:289–293.Google Scholar
  6. 6.
    Mancini, G., A. O. Carbonara, andJ. F. Heremans. 1965. Immunochemical quantitation of antigens by single radial immunodiffusion.Immunochemistry 2:235–254.Google Scholar
  7. 7.
    Travis, J., andG. S. Salvesen. 1983. Human plasma proteinase inhibitors.Annu. Rev. Biochem. 52:655–710.Google Scholar
  8. 8.
    Esnard, F., andF. Gauthier. 1984. Rat α1 cysteine proteinase inhibitor.J. Biol. Chem. 258:12443–12447.Google Scholar
  9. 9.
    Chiu, K. M., R. F. Mortensen, A. P. Osmond, andH. Gewurz. 1977. Interactions of α-1acid glycoprotein with the immune system.Immunology 32:997–1005.Google Scholar
  10. 10.
    Bennett, M., andK. Schmid. 1980. Immunosuppression by human plasma α1-acid glycoprotein: Importance of the carbohydrate moiety.Proc. Natl. Acad. Sci. U.S.A. 77:6109–6113.Google Scholar
  11. 11.
    Costello, M., B. A. Fiedel, andM. Gewurz. 1979. Inhibition of platelet aggregation by native and desialized α1-acid glycoprotein.Nature 281:667–668.Google Scholar
  12. 12.
    Henning, S. J. 1978. Plasma concentrations of total and free corticosterone during development in the rat.Am. J. Physiol. 235:E451-E456.Google Scholar
  13. 13.
    Heim, W. G., S. R. Ellerson. 1965. Involvement of the adrenal cortex in the appearance of rat slow α2 globulin.Nature 208:1330–1331.Google Scholar
  14. 14.
    Glenn, E. M., J. Bowman, andT. C. Koslowske. 1968. The systemic response to inflammation.Biochem. Pharmacol. Suppl. 17:27–49.Google Scholar
  15. 15.
    Miller, L. L., andE. E. Griffin. 1975.In Biochemical Actions of Hormones, Vol. III, pp. 159–186. G. Litwack, editor. Academic Press, New York.Google Scholar
  16. 16.
    Martin, G. E., M. H. Cake, P. E. Hartmann, andI. F. Cook. 1977. Relationship between foetal corticosteroids maternal progesterone and parturition in the rat.Acta Endocrinol. 84:167–176.Google Scholar
  17. 17.
    Henning, S. J. 1981. Postnatal development: Coordination of feeding, digestion, and metabolism.Am. J. Physiol. 241:G199-L214.Google Scholar
  18. 18.
    Davis, P. J., S. W. Spaulding, andR. I. Gregerman. 1970. The three thyroxine-binding proteins in rat serum: Binding capacities and effects of binding inhibitors.Endocrinology 87:978–986.Google Scholar
  19. 19.
    Sutherland, R. L., andM. R. Brandon. 1976. The thyroxine-binding properties of rat and rabbit serum proteins.Endocrinology 98:91–98.Google Scholar
  20. 20.
    Walker, P., J. D. Dubois, andJ. H. Dussault. 1980. Free thyroid hormone concentrations during postnatal development in the rat.Pediatr. Res. 14:247–249.Google Scholar
  21. 21.
    Partridge, N. C., C. H. Hoh, P. K. Weaver, andI. R. Oliver. 1975. Premature induction of glucokinase in the neonatal rat by thyroid hormones.Eur. J. Biochem. 51:49–54.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Tim Thomas
    • 1
  • Gerhard Schreiber
    • 1
  1. 1.The Russell Grimwade School of Biochemistry University of Melbourne ParkvilleVictoriaAustralia

Personalised recommendations