Skip to main content
Log in

A boundary integral formulation for elastically deformable particles in a viscous fluid

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

This paper reports a formulation and implementation of a mixed (both direct and indirect) boundary element method using the double layer and its adjoint in a form suitable for solving Stokes flow problems involving elastically deformable particles. The formulation is essentially the Completed Double Layer Boundary Element Method for solving an exterior traction problem for the surrounding fluid or solid phase, followed by an interior displacement, and a mobility problem (if required) for the elastic particles. At the heart of the method is a deflation procedure that allows iterative solution strategies to be adopted, effectively opens the way for large-scale simulations of suspensions of deformable particles to be performed. Several problems are considered, to illustrate and benchmark the method. In particular, an analytical solution for an elastic sphere in an elongational flow is derived. The stresslet calculations for an elastic sphere in shear and elongational flows indicate that elasticity of the inclusions can potentially lead to positive second normal stress difference in shear flow, and an increase in the tensile resistance in elongational flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Batchelor, The Stress System on a Suspension of Force-Free and Torque-Free Particles.J. Fluid Mech. 44, (1970), 545–570.

    Google Scholar 

  2. E. Bodewig,Matrix Calculus. North-Holland Publishing, Amsterdam 1956.

    Google Scholar 

  3. C.Y. Chan, A.N. Beris, and S.G. Advani, Second-Order Boundary Element Method Calculations of Hydrodynamic Interactions Between Particles in Close Proximity.Int. J. Numer. Meth. Fluids 14, (1992), 1063–1087.

    Google Scholar 

  4. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems.Proc. Roy. Soc. Lond. A 241, (1957), 376–396.

    Google Scholar 

  5. Y.O. Fuentes, S. Kim, and D.J. Jeffrey, Mobility Functions for Two Unequal Viscous Drops in Stokes Flow: I. Axisymmetric Motions.Phys. Fluids 31, (1988), 2445–2455.

    Google Scholar 

  6. Y.O. Fuentes, S. Kim, and D.J. Jeffrey, Mobility Functions for Two Unequal Viscous Drops in Stokes Flow: II. Asymmetric Motions.Phys. Fluids A 1, (1989), 61–76.

    Google Scholar 

  7. Y.O. Fuentes and S. Kim, Foundations of Parallel Computational Microhydrodynamics: Communication Scheduling Strategies.A.I.Ch.E. J. 38, (1992), 1059–1078.

    Google Scholar 

  8. S.L. Goren, S.L. O'Neill & M.E. O'Neill, Axymmetric Creeping Motion of an Open Torus.J. Fluid Mech. 101, (1980), 97–110.

    Google Scholar 

  9. S. Haber, G. Hetsroni and A. Solan, On the Low Reynolds Number Motion of Two Droplets.Int. J. Multiphase Flow 1, (1973). 57–71.

    Google Scholar 

  10. J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs, New Jersey 1965.

    Google Scholar 

  11. M.S. Ingber, Dynamic Simulation of the Hydrodynamic Interaction Among Immersed Particles in Stokes Flow.Int. J. Num. Method. Fluids 10, (1990), 791–809.

    Google Scholar 

  12. M.S. Ingber and L.A. Mondy, Direct Second Kind Boundary Integral Formulation for Stokes Flow Problems.Comp. Mech.,11, (1993), 11–27.

    Google Scholar 

  13. S.J. Karrila and S. Kim, Integral Equations of the Second Kind for Stokes Flow: Direct Solution for Physical Variables Removal of Inherent Accuracy Limitations.Chem. Engng. Commun. 82, (1989). 123–161.

    Google Scholar 

  14. S.J. Karrila, Y.O. Fuentes and S. Kim, Parallel Computational Strategies for Hydrodynamic Interactions between Rigid Particles of Arbitrary Shape in a Viscous Fluid.J. Rheology 33, (1989), 913–947.

    Google Scholar 

  15. S. Kim, Sedimentation of Two Arbitrarily Oriented Spheroids in a Viscous Fluid.Int. J. Multiphase Flow 11, (1985), 699–712.

    Google Scholar 

  16. S. Kim, Stokes Flow Past Three Spheres: an Analytic Solution.Phys. Fluids 30, (1987), 2309–2314.

    Google Scholar 

  17. S. Kim and S.J. Karrila,Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston 1991.

    Google Scholar 

  18. S. Kim and H. Power, On Two Boundary Integral Formulations for Particle Mobilities in Stokes Flow.J. Fluid Mech. 257, (1993), 637–639.

    Google Scholar 

  19. L.G. Leal, Particle Motions in Viscous Fluid.Ann. Rev. Fluid Mech. 12, (1980), 435–476.

    Google Scholar 

  20. W.H. Liao and D. Krueger, Multipole Expansion Calculation of Slow Viscous Flow about Spheroids of Different Sizes.J. Fluid Mech. 96, (1980), 223–241.

    Google Scholar 

  21. N. Liron and E. Barta, Motion of a Rigid Particle in Stokes Flow: A New Second-Kind Boundary-Integral Formulation.J. Fluid Mech. 238, (1992), 579–598.

    Google Scholar 

  22. A.E.H. Love,A Treatise on the Mathematical Theory of Elasticity, 4th Edition. Dover, New York 1944.

    Google Scholar 

  23. T. Mura,Micromechanics of Defects in Solids, 2nd Edition. Martinus Nijhoff, Dordrecht 1987.

    Google Scholar 

  24. K.C. Nunan and J.B. Keller, Effective Elasticity Tensor of a Periodic Composite.J. Mech. Phys. Solids 32, (1984), 259–280.

    Google Scholar 

  25. P. Pakdel and S. Kim, Mobility and Stresslet Functions of Particles with Rough Surfaces: A Numerical Study.J. Rheology 35, (1991), 797–823.

    Google Scholar 

  26. L.E. Payne and W.H. Pell, The Stokes Flow Problem for a Class of Axially Symmetric Bodies.J. Fluid Mech. 7, (1960), 529–549.

    Google Scholar 

  27. W. H. Pell and L. E. Payne, 1960, On Stokes Flow about a Torus.Mathematika,7, 78–92.

    Google Scholar 

  28. N. Phan-Thien and S. Kim,Microstructure in Elastic Media: Principles and Computational Methods. Oxford University Press, New York 1994a.

    Google Scholar 

  29. N. Phan-Thien and S. Kim, On the Elastic Double Layer: Some Exact Solutions and the Spectrum on the Sphere.J. Mech. Phys. Solids 42, (1994b), 1177–1197.

    Google Scholar 

  30. N. Phan-Thien and S. Kim, The Load Transfer Between Two Rigid Spherical Inclusions In an Elastic Medium.ZAMP,45, (1994c), 177–201.

    Google Scholar 

  31. N. Phan-Thien, T. Tran-Cong and A.L. Graham, Shear Flow of Periodic Arrays of Particle Clusters.J. Fluid Mech. 228, (1991), 275–293.

    Google Scholar 

  32. N. Phan-Thien and D.L. Tullock, Completed Double Layer Boundary Element Method in Elasticity.J. Mech. Phys. Solids 41, (1993), 1067–1086.

    Google Scholar 

  33. N. Phan-Thien and D.L. Tullock, Completed Double Layer Boundary Element Method in Elasticity and Stokes Flow: Distributed Computing Through PVM.Computational Mechanics 14, (1994), 370–383.

    Google Scholar 

  34. N. Phan-Thien, D.L. Tullock and S. Kim, Completed Double Layer in Half-Space: a Boundary Element Method.Comp. Mechanics 9, (1992), 121–135.

    Google Scholar 

  35. H. Power and G. Miranda, Second Kind Integral Equation Formulation of Stokes' Flows Past a Particle of Arbitrary Shape.SIAM J. Appl. Math. 47, (1987), 689–698.

    Google Scholar 

  36. C. Pozrikidis, The Instability of a Moving Viscous Drop.J. Fluid Mech. 210, (1990), 1–21.

    Google Scholar 

  37. C. Pozrikidis,Boundary Integral and Singularity Methods for Linearized Viscous Flow. CUP, Cambridge 1992.

    Google Scholar 

  38. J.M. Rallison, A Numerical Study of the Deformation and Burst of a Viscous Drop in General Shear Flows.J. Fluid Mech. 109, (1981), 465–482.

    Google Scholar 

  39. J.M. Rallison, The Deformation of Small Viscous Drops and Bubbles in Shear Flows.Ann. Rev. Fluid Mech. 16, (1984), 45–66.

    Google Scholar 

  40. J.M. Rallison and A. Acrivos, A Numerical Study of the Deformation and Burst of a Viscous Drop in an Extensional Flow.J. Fluid Mech. 89, (1978), 191–200.

    Google Scholar 

  41. F.J. Rizzo, An Integral Equation Approach to Boundary Value Problems in Classical Elastostatics.Quart. J. Appl. Math. 25, (1967), 83–95.

    Google Scholar 

  42. C. Seeling and N. Phan-Thien, Completed Double Layer Boundary Element Algorithm in Many-Body Problems for a Multi-Processor: an Implementation on the CM5.Computational Mechanics 15, (1994), 31–44.

    Google Scholar 

  43. M. Stimson and G.B. Jeffery, The Motion of Two Spheres in a Viscous Fluid.Proc. Roy. Soc. Lond. A 111, (1926), 110–116.

    Google Scholar 

  44. H.A. Stone, Dynamics of Drop Deformation and Breakup in Viscous Fluids.Ann. Rev. Fluid Mech. 26, (1994), 65–102.

    Google Scholar 

  45. H.A. Stone and L.G. Leal, Relaxation and Breakup of an Initially Extended Drop in an Otherwise Quiescent Fluid.J. Fluid Mech. 198, (1989), 399–427.

    Google Scholar 

  46. G.I. Taylor, The Viscosity of a Fluid Containing Small Drops of Another Fluid.Proc. Roy. Soc. Lond. A 138, (1932), 41–48.

    Google Scholar 

  47. G.I. Taylor, The Formation of Emulsions in Definable Fields of Flow.Proc. Roy. Soc. Lond. A 146, (1934), 501–523.

    Google Scholar 

  48. T. Tran-Cong and N. Phan-Thien, Stokes Problems of Multiparticle Systems: A Numerical Method For Arbitrary Flows.Phys. Fluids A 2, (1989), 453–461.

    Google Scholar 

  49. T. Tran-Cong, T., N. Phan-Thien and A.L. Graham, Stokes Problems of Multiparticle Systems: Periodic Arrays.Phys. Fluids A 2, (1990), 666–673.

    Google Scholar 

  50. D.L. Tullock,New Developments and Applications of the Boundary Element Method for Some Problems in Elasticity and Viscous Flow. Ph.D. thesis, The University of Sydney, Australia 1993.

    Google Scholar 

  51. B.J. Yoon and S. Kim, A Boundary Collocation Method for the Motion of Two Spheroids in Stokes Flow: Hydrodynamic and Colloidal Interaction.Int. J. Multiphase Flow,16, (1990), 639–650.

    Google Scholar 

  52. G.K. Youngren and A. Acrivos, Stokes Flow past a Particle of Arbitrary Shape: A Numerical Method of Solution.J. Fluid Mech. 69, (1975), 377–403.

    Google Scholar 

  53. O.C. Zienkiewicz and K. Morgan,Finite Elements and Approximation. Wiley, New York 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by a grant from the Australian Research Grant Council. X-J F wishes to acknowledge the support of the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan-Thien, N., Fan, X.J. A boundary integral formulation for elastically deformable particles in a viscous fluid. Z. angew. Math. Phys. 47, 672–694 (1996). https://doi.org/10.1007/BF00915269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00915269

Keywords

Navigation