Skip to main content
Log in

Monte carlo analysis of a free electron laser in a storage ring

  • Photophysics, Laser Chemistry
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

This paper contains studies of the operation of a one-dimensional storage ring free-electron laser (FEL) using a Monte Carlo technique to generate the electron energy fluctuations produced by the FEL. The energy and phase equations of motion have been numerically integrated to calculate equilibrium values of: a) electron energy spread, b) electron phase spread (e.g. electron bunch length), and c) efficiency of conversion of electron energy into laser radiation. The operation of the storage ring free-electron laser was studied for five different FEL magnet designs. It is found that a “one-dimensional” storage ring free-electron laser can operate on a steady-state basis only with reduced overall efficiency due to the inability of the system to damp effectively the electron energy fluctuations produced by the FEL. Results of operation of a SRFEL in a pulsed mode are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

U rf :

Energy received by an electron from the rf cavity [J]

U FEL :

Amount of FEL energy radiated by the electron in one revolution [J]

U SYN :

Amount of synchrotron energy radiated by the synchronous electron in one revolution [J]

V :

U rf/mc 2

δγ :

U FEL/mc 2

γ n :

Normalized electron energy during itsn th revolution in the ring

t n :

Time of electron arrival to the rf cavity (SEC)

γ s :

Normalized energy of the synchronous electron

t s :

Time of arrival of the synchronous electron to the rf cavity (SEC)

γ R :

Normalized FEL resonance energy

θ n :

Optical phase of the electron at the FEL during itsn th revolution

Φ:

rf cavity phase constant

∝:

Momentum compaction factor for the SRFEL

T :

Revolution time of the synchronous electron (SEC)

σ:

Normalized electron RMS energy spread

τRms :

Electron bunch length (SEC)

1/N s :

Synchrotron energy damping rate

1/N D :

SRFEL effective energy damping rate

N :

Number of storage ring revolutions

a k :

Energy autocorrelation function

\(\overline {\delta \Gamma }\) :

Normalized mean SRFEL energy radiated by the electron per revolution

S :

Optical power density [w/m2]

λ:

Optical wavelength [m]

λ0 :

FEL magnet period [m]

B :

FEL magnetic field [Tesla]

v Z :

Longitudinal electron velocity along FEL interaction region

v ZR :

Longitudinal FEL resonance velocity

References

  1. L.R.Elias, W.M.Fairbank, J.M.J.Madey, H.A.Schwettman, T.I.Smith: Phys. Rev. Lett.36, 717 (1976)

    Article  ADS  Google Scholar 

  2. D.A.G.Deacon, L.R.Elias, J.M.J.Madey, G.J.Ramian, H.A.Schewettman, T.I.Smith: Phys. Rev. Lett.38, 897 (1977)

    Article  ADS  Google Scholar 

  3. J.M.J.Madey: J. Appl. Phys.42, 1906 (1971)

    Article  ADS  Google Scholar 

  4. L.R.Elias, W.M.Fairbank, J.M.J.Madey, H.A.Schwettman, T.I.Smith: Stanford High Energy Physics Laboratory, Report HEPL-812 (1976)

  5. L.R.Elias, J.M.J.Madey, T.L.Smith: Stanford High Energy Physics Laboratory Report HEPL-824 (1978)

  6. C.Kunz (ed):Synchrotron Radiation, Topics in Current Physics10 (Springer, Berlin, Heidelberg, New York 1973)

    Google Scholar 

  7. M.Sands: SLAC Report No. 121 (1970)

  8. W.Colson: InThe Physics of Quantum Electronics, Vol. 5 (Addison Wesley, Reading, MA 1977)

    Google Scholar 

  9. F.A.Hopf, P.Meystre, M.O.Scully, W.H.Louisell: Opt. commun.18, 413 (1976)

    Article  ADS  Google Scholar 

  10. N.M.Kroll, W.A.McMullin: Phys. Rev. A17, 300 (1978)

    Article  ADS  Google Scholar 

  11. J.M.J.Madey, D.A.G.Deacon, L.R.Elias, T.I.Smith: Nuovo Cimento SIB, 53 (1979)

  12. J.M.J.Madey: Nuovo Cimento50B, 64 (1979)

    ADS  Google Scholar 

  13. M.Sands: CNEN-Frascati Internal Memorandum T-73 (1975)

  14. A.Renieri: CNEN-Frascati, Report 77–33 (1977) Edizioni Scientifiche, C. P. GS., 00044 Frascati, Rome, Italy)

    Google Scholar 

  15. D.A.G.Deacon, J.M.J.Madey: Phys. Rev. Lett.44, 449 (1980)

    Article  ADS  Google Scholar 

  16. D.A.G.Deacon, J.M.J.Madey: Appl. Phys.19, 295 (1979)

    Article  ADS  Google Scholar 

  17. L.R.Elias, J.M.J.Madey, T.I.Smith: Stanford University High Energy Physics Laboratory Report HEPL-831 (1978)

  18. For recent treatments of the Monte Carlo method see K.Binder (ed.)Monte Carla Methods in Statistical Physics, Iopics in Current Physics, Vol. 7 (Springer, Berlin, Heidelberg, New York 1979)

    Google Scholar 

  19. G.I.Marchnk et al.:The Monte Carlo Methods in Atmospheric Optics, Springer Series Opt. Sci.12 (Springer, Berlin, Heidelberg, New York 1980)

    Google Scholar 

  20. J.M.J.Madey, R.C.Taber: InPhysics of Quantum Electronics, Vol. 7, ed. by S.Jacobs, H.Pilloff, M.Sargent, M.Scully, R.Spitzer (Addison-Wesley, Reading, MA 1980)

    Google Scholar 

  21. J.M.J.Madey: Stanford High Energy Physics Laboratory Reports HEPL 850 (1979), HEPL 853 (1979), and HEPL 855 (1979)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by U.S. Army BMD-ATC, under contract number DASG 60-77-C-0083.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias, L.R., Madey, J.M.J. & Smith, T.I. Monte carlo analysis of a free electron laser in a storage ring. Appl. Phys. 23, 273–282 (1980). https://doi.org/10.1007/BF00914911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00914911

PACS

Navigation