Solution of coupled heat-transfer problems in flow about bodies of different shapes

  • V. I. Zinchenko
  • E. N. Putyatina
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Lykov, Heat and Mass Transfer (Handbook) [in Russian] Énergiya, Moscow (1972).Google Scholar
  2. 2.
    V. I. Zinchenko and E. G. Trofimchuk, “Solution of nonsimilar problems of the theory of laminar boundary-layer flow with allowance for coupled heat transfer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1977).Google Scholar
  3. 3.
    V. I. Zinchenko and E. N. Putyatina, “Heat and mass transfer in flow about bodies of different form with allowance for injection,” Inzh.-Fiz. Zh.,45, No. 1 (1983).Google Scholar
  4. 4.
    P. R. Chapman and H. W. Rubbesin, “Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature,” J. Aeron. Sci.,16, No. 9 (1949).Google Scholar
  5. 5.
    A. Sh. Dorfman, Heat Transfer in Flow about Nonisothermal Bodies [in Russian], Mashinostroenie, Moscow (1982).Google Scholar
  6. 6.
    Tuncer Cebeci, “Behavior of turbulent flow near a porous wall with pressure gradient,” AIAA J.,8, No. 12 (1970).Google Scholar
  7. 7.
    K. K. Chen and N. A. Thyson, “Extension of Emmons spot theory to flows on blunt bodies,” AIAA J.,9, No. 5 (1971).Google Scholar
  8. 8.
    R. H. Feldhuhn, “Heat transfer from a turbulent boundary layer on a porous hemisphere,” AIAA Paper No. 119 (1976).Google Scholar
  9. 9.
    L. N. Lyubimov and V. V. Rusanov, Gas Flow about Blunt Bodies [in Russian], Vol. 2, Nauka, Moscow (1970).Google Scholar
  10. 10.
    A. M. Grishin and V. N. Bertsun, “Iterative-interpolational method and the theory of splines,” Dokl. Akad. Nauk SSSR,214, No. 4 (1974).Google Scholar
  11. 11.
    N. N. Yanenko, Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1967).Google Scholar
  12. 12.
    Camp, Rouse, and Detra, “Laminar heat exchange between blunt bodies and a flow of dissociated air,” in: Gasdynamics and Heat Transfer in the Presence of Chemical Reactions [Russian translation], IL, Moscow (1962).Google Scholar
  13. 13.
    G. A. Tirskii, “Method of successive approximations for integrating equations of a laminar multiple-component boundary layer with chemical reactions, including an ionization reaction,” Otchet Inst. Mekh. Mosk. Gos. Univ., No. 1016 (1969).Google Scholar
  14. 14.
    I. G. Brykina, É. A. Gershbein, and S. V. Peigin, “Laminar three-dimensional boundary layer on a permeable surface near a symmetry plane,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1980).Google Scholar
  15. 15.
    A. Zhukauskas and N. Zhyugzhda, Heat Transfer in Laminar Flow [in Russian], Mintis, Vilnius (1969).Google Scholar
  16. 16.
    D. Fay and F. Riddel, “Theoretical analysis of heat transfer at a forward critical point washed by dissociated air,” in: Gasdynamics and Heat Transfer in the Presence of Chemical Reactions [Russian translation], IL, Moscow (1962).Google Scholar
  17. 17.
    Yu. V. Lapin, Turbulent Boundary Layer in Supersonic Gas Flows [in Russian], Nauka, Moscow (1982).Google Scholar
  18. 18.
    B. A. Zemlyanskii and G. N. Stepanov, “Calculation of heat transfer in three-dimensional hypersonic flow of air about thin blunt cones,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1981).Google Scholar
  19. 19.
    V. S. Avduevskii, B. M. Galitseiskii, G. A. Glebov, et al., Principles of Heat Transfer in Aviation and Rocket-Space Technology [in Russian], Mashinostroenie, Moscow (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. I. Zinchenko
    • 1
  • E. N. Putyatina
    • 1
  1. 1.Tomsk

Personalised recommendations