Collision of an atom with the surface of a solid

  • V. V. Mazhuga


Mathematical Modeling Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Lennard-Jones and C. Strachan, “The inter action of atoms and molecules with solid surfaces,” Proc. Roy. Soc. A, vol. 150, p. 442, 1935.Google Scholar
  2. 2.
    J. E. Lennard-Jones, A. F. Devonshire, “The condensation and evaporation of atoms and molecules,” Proc. Roy. Soc. A. vol. 156, p. 6, 1936.Google Scholar
  3. 3.
    F. M. Devienne, “Influence de la temperature de la surface condensatrice sur les valeurs des facteurs de condensation des jets moleculaires d'antimoine,” Compt. rend, vol. 238, p. 2397, 1954.Google Scholar
  4. 4.
    S. Wexter, “Deposition of atomic beams,” Revs. Modern Phys., vol. 30, no. 2, p. 402, 1958.Google Scholar
  5. 5.
    J. E. Lennard-Jones “The dispersal of energy from an activated link,” Proc. Roy. Soc. A. vol. 163, p. 127, 1937.Google Scholar
  6. 6.
    N. B. Cabrera, “Structure of crystal surfaces,” Disc. Faraday Soc., vol. 28, p. 16, 1959.Google Scholar
  7. 7.
    R. W. Zwahsig, “Collision of gas atom with cold surface,” J. Chem. Phys., vol. 32, p. 1173, 1960.Google Scholar
  8. 8.
    B. McCarroll and G. Ehrlich, “Trapping and energy transfer in atomic collisions with a crystal surface,” J. Chem. Phys., vol. 38, p. 523, 1963.Google Scholar
  9. 9.
    V. B. Leonas, “Energy exchange in the collision of a particle with a solid wall,” PMTF, no. 6, p. 124, 1963.Google Scholar
  10. 10.
    E. Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme,” Ann. Phys., vol. 44, p. 916, 1914.Google Scholar
  11. 11.
    R. J. Rubin, “Random motion of a heavy particle substituted in a one-dimensional crystal lattice,” Proc. Internat. Symp. Transport Processes Statist. Mech. Brussels, p. 155, 1958.Google Scholar
  12. 12.
    E. N. Dekanosidze, Tables of Cylindrical Functions of Two Variables [in Russian], Izd-vo AN SSSR, 1956.Google Scholar
  13. 13.
    P. I. Kuznetsov, “Representation of a contour integral,” PMM, 11, no. 2, 1947.Google Scholar

Copyright information

© The Faraday Press, Inc. 1969

Authors and Affiliations

  • V. V. Mazhuga
    • 1
  1. 1.Moscow

Personalised recommendations