Skip to main content
Log in

Lipoteichoic acid-antilipoteichoic acid complexes induce superoxide generation by human neutrophils

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Human neutrophils (PMNs) which have been incubated with lipoteichoic acid (LTA) from group A streptococci generated large amounts of Superoxide (O 2 chemiluminescence and hydrogen peroxide when challenged with anti-LTA antibodies. Cytochalasin B further enhanced O *2 generation. The onset of Of generation by the LTA-anti-LTA complexes was much faster than that induced by BSA-anti-BSA complexes. LTA-treated PMNs generated much less O *2 when challenged with BSA complexes, suggesting that LTA might have blocked, nonspecifically, some of the Fc receptors on PMNs. PMNs treated with LTA-anti-LTA complexes further interacted with bystander nonsensitized PMNs resulting in enhanced Of generation, suggesting that small numbers of LTA-sensitized PMNs might recruit additional PMNs to participate in the generation of toxic oxygen species. Protelolytic enzyme treatment of PMNs further enhanced the generation of O 2 by PMNs treated with LTA-anti-LTA. Superoxide generation could also be induced when PMNs and anti-LTA antibodies interacted with target cells (fibroblasts, epithelial cells) pretreated with LTA. This effect was also further enhanced by pretreatment of the target cells with proteases. PMNs incubated with LTA released lysosomal enzymes following treatment with anti-LTA antibodies. The amounts of phosphatase,Β-glucoronidase,N-acetylglucosaminidase, mannosidase, and lysozyme release by LTA-anti-LTA complexes were much smaller than those released by antibody or histone-opsonized streptococci, suggesting that opsonized particles are more efficient lysosomal enzyme releasers. However, since the amounts of O 2 generated by the LTA complexes equaled those generated by the opsonized particles, it is assumed that the signals for triggering a respiratory burst and lysosomal enzyme secretion might be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wicken, A. J., and K. W.Knox. Lipoteichoic acids: A new class of bacterial antigen.Science 187:1161–1167.

  2. Shockman, G. D., andA. J. Wicken. 1981. Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Academic Press, New York.

    Google Scholar 

  3. Huff, E. 1981. Lipoteichoic acid, a major amphiphile of Gram-positive bacteria that is not readily extractable.J. Bacteriol. 149:399–402.

    Google Scholar 

  4. Harris, T. N., andS. Harris. 1953. Agglutination by human sera of erythrocytes incubated with streptococcal culture supernates.J. Bacteriol. 66:159–165.

    Google Scholar 

  5. Neter, E. 1956. Bacterial hemagglutinization and hemolysis.Bacteriol. Rev. 20:166–188.

    Google Scholar 

  6. Stewart, F. S., andW. T. Martin. 1962. Absorption of streptococcal red cell sensitizing antigen to various tissues.J. Pathol. Bacteriol. 84:251–253.

    Google Scholar 

  7. Jackson, R. W., andM. Moskowitz. 1966. Nature of red cell sensitizing substance from streptococci.J. Bacteriol. 91:2205–2209.

    Google Scholar 

  8. Moskowitz, M. 1966. Separation and properties of a red-cell-sensitizing substance from streptococci.J. Bacteriol. 91:2200–2204.

    Google Scholar 

  9. Neeman, N., andI. Ginsburg. 1972. Red cell sensitizing antigen of group streptococci. I. Biological and chemical properties.Isr. J. Med. 8:1799–1806.

    Google Scholar 

  10. Sela, M. N., M. Lahva, andI. Ginsburg. 1977. Effect of leukocyte hydrolase on bacteria. IX. The release of lipoteichoic acid from group A streptococci and fromStreptococcus mutons by leukocyte extracts by lysozyme: Relation to tissue damage in inflammatory sites.Inflammation 2:151–164.

    Google Scholar 

  11. Horne, D., andA. Tomasz. 1979. Release of lipoteichoic acid fromStreptococcus sanguis. Stimulation of release during penicillin treatment.J. Bacteriol. 137:1180–1184.

    Google Scholar 

  12. Nealon, M. J., E. H. Beachey, H. S. Courtney, andA. Simpson. 1986. Release of fibronectin-lipoteichoic acid complexes from group a streptococci with penicillin.Infect. Immun. 51:529–535.

    Google Scholar 

  13. Knox, K. W., andA. J. Wicken. 1975. Immunological properties of teichoic acids.Bacteriol. Rev. 37:215–257.

    Google Scholar 

  14. Ofek, I., E. H. Beachey, W. Jefferson, andG. L. Campbell. 1975. Cell membrane binding properties of group A streptococcal lipoteichoic acid.J. Exp. Med. 141:990–1003.

    Google Scholar 

  15. Beachey, E. H., andI. Ofek. 1976. Epithelial cell binding on group A streptococcal by lipoteichoic acid on fimbriae of denuded M protein.J. Exp. Med. 143:759–771.

    Google Scholar 

  16. Beachey, W. H., T. M. Chiang, I. Ofek, andA. H. Kang. 1977. Interaction of lipoteichoic acid with human platelets.Infect. Immun. 16:649–654.

    Google Scholar 

  17. Courtney, H., I. Ofek, A. Simpson, andE. H. Beachey. 1981. Characterization of lipoteichoic acid binding to polymorphonuclear leukocytes of human blood.Infect. Immun. 32:625–631.

    Google Scholar 

  18. Courtney, H. S., A. W. Simpson, andE. H. Beachey. 1986. Relationship of critical micelle concentrations of bacterial lipoteichoic acid to biological activities.Infect. Immun. 51:414–418.

    Google Scholar 

  19. Dishon, T., R. Finkel, Z. Marcus, andI. Ginsburg. 1967. Cell sensitizing products of streptococi.Immunology 13:555–564.

    Google Scholar 

  20. Neeman, N., andI. Ginsburg. 1971. Red cell sensitizing agent of group A streptococci. II. Immunological and immunopathological properties.Isr. J. Med. Sci. 8:1807–1816.

    Google Scholar 

  21. Ferne, M., S. Bergner-Rabinowitz, andI. Ginsburg. 1976. The effect of leukocyte hydrolases on bacteria. IV. The role played by leukocyte extracts in the sensitization of RBC by lipopolysaccharides and the cell-sentitizing factor of group A streptococci.Inflammation 1:247–260.

    Google Scholar 

  22. Hummel, S. D., andJ. A. Winkelstein. 1986. Bacterial lipoteichoic acid sensitizes host cells for destruction by autologous complement.J. Clin. Invest. 77:1533–1538.

    Google Scholar 

  23. B. D. Weinreb, G. D. Shockman, S. E. Beachey, A. J. Swift, andJ. A. Winkelstein. 1986. The ability of sensitized host cells for destruction by autologous complement is a general property of lipoteichoic acid.Infect. Immun. 54:797–799.

    Google Scholar 

  24. Simpson, W. A., J. B. Dale, andE. H. Beachey. 1982. Cytotoxicity of the glycolipid region of stretococcal lipoteichoic acid for cultures of human heart cells.J. Lab. Clin. Med. 99:118–126.

    Google Scholar 

  25. Leon, O., andC. Panos. 1983. Cytotoxicity and inhibition of normal collagen synthesis in mouse fibroblasts by lipoteichoic acid ofStreptococcus pyogenes type 12.Infect. Immun. 40:758–794.

    Google Scholar 

  26. Loos, M., F. Clas, andW. Fischer. 1986. Interaction of purified lipoteichoic acid with the classical complement pathway.Infect. Immun. 53:595–599.

    Google Scholar 

  27. Winkelstein, J. A., andA. Tomasz. 1978. Activation of the alternative complement pathway for pneumococcal cell wall teichoic acid.J. Immunol. 120:174–178.

    Google Scholar 

  28. Hadrop, P. J., R. L. Grady, K. W. Knox, andA. J. Wicken. 1980. Stimulation of lysosomal enzyme release macrophages by lipoteichoic acid.J. Periodont. Res. 15:492–501.

    Google Scholar 

  29. Ginsburg, I., andP. G. Quie. 1980. Modulation of human polymorphonuclear chemotaxis by leukocyte extracts, bacterial products, inflammatory exudates and polyelectrolytes.Inflammation 4:310–311.

    Google Scholar 

  30. Raynor, R. H., D. F. Scott, andG. K. Best. 1981. Lipoteichoic acid inhibition of phagocytosis ofStaphylococcus aureus by human polymorphonuclear leukocytes.Clin. Immunol. Immunopathol. 19:181–189.

    Google Scholar 

  31. Sela, M. N., I. Ginsburg, T. Dishon, Z. Duchan, andA. A. Garfunkel. 1982. Modulation of human lymphocyte transformation by bacterial products and leukocyte lysates.Inflammation 6:31–38.

    Google Scholar 

  32. Aasjord, P., H. Nyland, andR. Marte. 1986. The mitogenic properties of lipoteichoic acid fromStaphylococcus aureus.Acta Pathol. Microbiol. Immunol. Scand. Sect. C 94:91–96.

    Google Scholar 

  33. Miller, G. A., andR. W. Jackson. 1973. Effect of a streptococcus pyogen teichoic acid on the immune response of mice.J. Immunol. 110:148–156.

    Google Scholar 

  34. Hausman, E., O. Luderitz, K. W. Knox, andN. W. Weinfeld. 1975. Structural requirements for bone resorption by endotoxin and lipoteichoic acid.J. Dent. Res. 54:94–99.

    Google Scholar 

  35. Bab, I., M. N. Sela, I. Ginsburg, andT. Dishon. 1979. Inflammatory lesion and bone resorption induced in rat periodontium by lipoteichoic acid.Inflammation 3:345–358.

    Google Scholar 

  36. Aasjord, P., H. Nyland, andS. Mork. 1980. Encephalitis in rabbits by lipoteichoic acid.Acta Pathol. Microbiol. Scand. Sect. C 88:287–291.

    Google Scholar 

  37. Fiedel, L. A., andR. W. Jackson. 1979. Nephropathy in the rabbit associated with immunization to group A streptococcal lipoteichoic acid.Med. Microbiol. Immunol. 167:251–260.

    Google Scholar 

  38. Lopatin, D., andR. E. Kessler. 1985. Pretreatment with lipoteichoic acid sensitizes target cells to antibody-dependent cellular cytotoxicity in the presence of anti-lipoteichoic antibodies.Infect. Immun. 48:638–643.

    Google Scholar 

  39. Yamammoto, A., H. Usami, M. Nagamuta, Y. Sugawara, S. Hamada, T. Yamamoto, K. Kato, S. Kokeguchi, andS. Kotami. 1985. The use of lipoteichoic acid (LTA) from streptococcus pyogen to induce a serum factor causing tumor necrosis.Br. J. Cancer 51:739–742.

    Google Scholar 

  40. Leon, O., andC. Panos. 1985. Effect of streptococcal lipoteichoic acid on prolyl hydroxylase activity as related to collagen formation in mouse fibroblasts.Infect. Immun. 50:641–646.

    Google Scholar 

  41. Holtje, J. V., andA. Tomasz. 1975. Lipoteichoic acid: A specific inhibitor of autolysin activity in pneumococci.Proc. Natl. Acad. Sci. U.S.A. 72:1690–1691.

    Google Scholar 

  42. Cleveland, R. F., A. J. Wicken, L. Daneo-Moore, andG. D. Shockman. 1976. Inhibition of wall autolysis inStreptococcus faecalis by lipoteichoic acid.J. Bacteriol. 126:192–197.

    Google Scholar 

  43. Sela, M. N., I. Ofek, M. Lahav, andI. Ginsburg. 1978. The effect of leukocyte hydrolases on bacteria. XI. Lysis by leukocyte extracts and myeloperoxidase ofStaphylococcus aureus mutant which is deficient in teichoic acid and the initiation of bacteriolysis by lipoteichoic acid.Proc. Soc. Exp. Biol. Med. 159:126–130.

    Google Scholar 

  44. Tomasz, A., andS. Waks. 1975. Mechanism of action of penicillin: Triggering of pneumococcal autolytic enzyme by inhibitors of cell-wall synthesis.Proc. Natl. Acad. Sci. U.S.A. 72:4162–4166.

    Google Scholar 

  45. Tomasz, A. 1979. The mechanisms of irreversible anti-microbial effect of penicillin: How the beta lactam antibiotics kill and lyse bacteria.Annu. Rev. Microbiol. 33:113–137.

    Google Scholar 

  46. Weiss, S. J., andP. A. Ward. 1982. Immune complex induced generation of oxygen metabolites of human neutrophils.J. Immunol. 129:309–313.

    Google Scholar 

  47. Fischer, W., H. V. Kach, andP. Haas. 1983. Improved preparation of lipoteichoic acids.Eur. J. Biochem. 154(3):1115–1116.

    Google Scholar 

  48. Ginsburg, I. 1972. Mechanisms of cell and tissue injury induced by group A streptococci: Relation to poststreptococcal sequelae.J. Infect. Dis. 120:294–315.

    Google Scholar 

  49. Ginsburg, I., R. Borinski, D. Malamud, F. Struckmeire, andV. Klimetzek. 1985. Chemiluminescence and Superoxide generation by leukocytes stimulated by polyelectrolyte-opsonized polyhistidine, cytochalasins and inflammatory exudates as modulators of oxyen burst.Inflammation 9:245–271.

    Google Scholar 

  50. Babior, B., J. T. Curnutte, andB. McMurrich. 1976. The particulate superoxide forming system from human neutrophils: Properties of the system and further evidence supporting its participation in the respiratory burst.J. Clin. Invest. 58:989–996.

    Google Scholar 

  51. Thurman, R. G., H. G. Leyland, andR. Scholz. 1972. Hepatic microsomal ethanol oxidation, hydrogen peroxide formation and the role of catalase.Eur. J. Biochem. 25:420–430.

    Google Scholar 

  52. Ginsburg, I., R. Borinski, M. Sadovnic, Y. Eilam, andK. Rainsford. 1987. Poly-l-histidine: A potent stimulator of superoxide generation in human blood leukocytes.Inflammation 11:253–277.

    Google Scholar 

  53. McPhail, L. C., P. Henson, andR. B. Johnston. 1981. Respiratory burst enzyme in human neutrophil: Evidence for multiple mechanisms of activation.J. Clin Invest. 67:710–716.

    Google Scholar 

  54. Warren, J. S., P. A. Ward, K. J. Johnson, andI. Ginsburg. 1987. Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances.Am. J. Pathol. 128:67–77.

    Google Scholar 

  55. Ginsburg, I. 1987. Cationic polyelectrolytes: A new look at their possible roles as opsonins, as stimulators of the respiratory burst in leukocytes, in bacteriolysis and as modulators of immune complex disease.Inflammation 11:489–515.

    Google Scholar 

  56. Ginsburg, I., R. Borinski, M. Lahav, Y. Matzner, I. Eliasson, P. Christensen, andD. Malamud. 1984. Poly-l-arginine and N-formylated chemotactic peptide act synergistically with lectin and calcium inonophore to induce intense chemiluminescence and Superoxide production in human blood leukocytes: Modulation by metabolic inhibitors of sugars and polyelectrolytes.Inflammation 8:1–26.

    Google Scholar 

  57. Henricks, P. A., M. Van Der Tol, R. M. W. M. Thyssen, B. S. Van Asbeck, andJ. Ver-Hoef. 1983.Escherichia coli lipopolysacchride diminish and enhance cell function of human polymorphonuclear leukocytes.Infect. Immun. 4:294–301.

    Google Scholar 

  58. Kapp, A., M. Freudenberg, andC. Gallanos. 1987. Induction of human granulocyte chemiluminesence by bacterial lipopolysaccharides.Infect. Immun. 55:758–761.

    Google Scholar 

  59. Abramson, S., H. Edelson, H. Kaplan, W. Given, andG. Weissmann. 1984. The inactivation of the polymorphonuclear leukocyte by nonsteroidal antiinflammatory drugs.Inflammation 8:S103-S108.

    Google Scholar 

  60. Fantone, J. C., W. A. Marasco, L. J. Elgas, andP. Ward. 1984. Stimulus specificity of prostaglandin inhibition of rabbit polymorphonuclear leukocyte lysosomal enzyme release and Superoxide anion production.Am. J. Pathol. 115:9–16.

    Google Scholar 

  61. Ward, P. A., M. C. Sulavik, andK. J. Johnson. 1984. Rat neutrophil activation and effects of lipoxygenase and cyclooxygenase inhibitors.Am. J. Pathol. 116:223–233.

    Google Scholar 

  62. Sedgwick, J. B., M. L. Berube, andR. B. Zurier, 1985. Stimulus-dependent inhibition of superoxide generation by prostaglandins.Clin. Immunol. Immunopathol. 34:205–215.

    Google Scholar 

  63. Cohen, H. J., M. E. Chovaniec, andS. E. Ellis. 1980. Chloropromazin inhibition of granulocyte superoxide production.Blood 56:23–29.

    Google Scholar 

  64. Goldstein, I. M., M. Cerquerira, S. Lind, andH. Kaplan. 1977. Evidence that superoxide-generating system of human leukocytes is associated with the cell surface.J. Clin. Invest. 59:249–254.

    Google Scholar 

  65. Romeo, D., G. Sabucchi, andF. Rossi. 1973. Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin.Nature 243:111.

    Google Scholar 

  66. Hatch, G., D. E. Gardner, andD. B. Menzel. 1978. Chemiluminescence of phagocytic cells caused by N-formyl-methionyl peptide.J. Exp. Med. 147:182–195.

    Google Scholar 

  67. Becker, E. L., M. Sigman, andM. Oliver. 1979. Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptide and A23187: The nature of receptor and the requirement of Ca++.Am. J. Pathol. 95:81–97.

    Google Scholar 

  68. Cohen, H. J., andM. E. Chovaniec. 1978. Superoxide generation by digitonin stimulated guinea-pig granulocytes. A basis for continuous assay for monitoring Superoxide production.J. Clin. Invest. 61:1081–1087.

    Google Scholar 

  69. Ginsburg, I., R. Borinski, andM. Pabst. 1985. NADPH and “cocktails” containing polyarginine reactivate Superoxide generation in leukocyte lysed by membrane-damaging agents.Inflammation 9:341–363.

    Google Scholar 

  70. Weiss, S. J., andP. Ward. 1982. Immune complex induced generation of oxygen metabolite by human neutrophils.J. Immunol. 129:309–313.

    Google Scholar 

  71. Malawista, S. E., J. B. L. Gee, andK. G. Bensch. 1971. Cytochalasin B reversibility inhibits phagocytosis: Functional, metabolic and structural effects in human blood leukocytes and rabbit alveolar macrophages.Yale J. Biol. Med. 44:286–300.

    Google Scholar 

  72. Elferink, J. G. R., andJ. C. Riemersma. 1981. The effect of cytochalasin on polymorphonuclear leukocytes activated by chemotactic peptide.J. Reticuloendothelial Soc. 29:163–174.

    Google Scholar 

  73. Wright, S. D., andS. D. Silverstein. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes.J. Exp. Med. 158:2016–2023.

    Google Scholar 

  74. Ginsburg, I., S. E. G. Fligiel, R. G. Kunkel, andJ. Varani. 1987. Phagocytosis ofCandida albicans enhance malignant behavior of murine tumor cells.Science 238:1573–1575.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a research grant from Dr. S. M. Robbins of Cleveland Ohio, and by grants HL-288442, HL-31963 and GM-29507, from the National Institutes of Health, Bethesda, Maryland, and by grant IM-432 from the American Cancer Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsburg, I., Fligiel, S.E.G., Ward, P.A. et al. Lipoteichoic acid-antilipoteichoic acid complexes induce superoxide generation by human neutrophils. Inflammation 12, 525–548 (1988). https://doi.org/10.1007/BF00914316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00914316

Keywords

Navigation