, Volume 14, Issue 5, pp 471–483 | Cite as

Antiinflammatory reactivity of copper(I)-thionein

  • Ralf Miesel
  • Hans -Jürgen Hartmann
  • Ulrich Weser
Original Articles


In unseparated human blood the reactivity of yeast copper (I)-thionein on TPA-activated polymorphonuclear leukocytes was evaluated and compared with low Mr copper chelates exerting Cu2Zn2 superoxide dismutase mimetic activity. Cu, 18ΜM, in the form of Cu-thionein was sufficient to inhibit the Superoxide production of activated human blood phagocytes by 50%. Furthermore, the scavenging of hydroxyl radicals and singlet oxygen by Cu(I)-thionein was determined, using the 2-deoxyribose fragmentation assay induced by decaying K3CrO8 and the NADPH oxidation caused by UVA illuminated psoralen, respectively. The inhibitory reactivity of Cu-thionein in both assays was compared with that of serum proteins including albumin, ceruloplasmin, transferrin, and ferritin. The galactosamine/endotoxininduced hepatitis in male NMRI mice was used to evaluate the antiinflammatory reactivity of Cu-thionein in vivo. The serum copper, superoxide dismutase, and sorbitol dehydrogenase concentrations, as well as the activity of polymorphonuclear leukocytes in unseparated blood seemed most appropriate to quantify the protective capacity of Cu-thionein in the course of an oxidative stress-dependent liver injury. The intraperitoneal application of 32.5 Μmol/kg thionein-Cu limited this damage to 45%.


Ferritin Polymorphonuclear Leukocyte Psoralen Serum Copper NMRI Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cu2Zn2 superoxide dismutase (EC


polymorphonuclear leukocyte




[N,N′-bis(2-pyridylmethylene-1,4-butanediamine](N,N′, N″, N″)]-copper(II)


[1,8-di(2-imidazolyl)-2, 7-diazaoctadiene-1, 7]-(N′,N″,N″)-copper(II), Cu(Sal)2, copper salicylate


2-thiobarbituric acid


diethylenetriaminepentaacetic acid


sorbitol dehydrogenase (EC


bovine serum albumin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hamer, D. H.. 1986. Metallothionein.Annu. Rev. Biochem. 55:913–951.Google Scholar
  2. 2.
    Failla, M. L. andR. J. Cousins. 1978. Zinc uptake by isolated rat liver parenchymal cells.Biochim. Biophys. Acta 538:435–444.Google Scholar
  3. 3.
    Karin, M., R. D. Andersen, E. Slater, K. Smith, andH. R. Herschman. 1980. Metallothionein mRNA induction in HeLa cells in response to zinc or dexamethasone is a primary induction response.Nature 286:295–297.Google Scholar
  4. 4.
    Oh, S. H., J. T. Deagen, P. D. Whanger, andP. H. Weswig 1978. Biological function of metallothionein. Effect of age on its metabolism in rats.Am. J. Physiol. 234:519–524.Google Scholar
  5. 5.
    Sobocinski, P. Z., W. J. Canterbury, andC. A. Mapes 1977. Induction of hepatic zinc binding proteins by endotoxin and leucocytic endogenous mediators.Fed. Proc. 36:1100.Google Scholar
  6. 6.
    Friedman, R. L., S. P. Manly, M. McMahon, I. M. Kerr, andG. R. Stark 1984. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells.Cell 38:745–755.Google Scholar
  7. 7.
    Deuschle, U., andU. Weser. 1985. Copper and inflammation.Prog. Clin. Biochem. Med. 2:97–130.Google Scholar
  8. 8.
    Allen, R. C.. 1980.In The Reticuloendothelial System, Vol. II. A. J. Sbarra and R. R. Strauss, editors. Plenum Publ., New York, 309.Google Scholar
  9. 9.
    Rossi, F. 1986. The O2 -forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function.Biochim. Biophys. Acta 853:65–89.Google Scholar
  10. 10.
    Younws, M., E. Lengfelder, S. Zienau, andU. Weser. 1978. Pulse radiolytically generated Superoxide and Cu(II)-salicylates.Biochem. Biophys. Res. Commun. 81:576–580.Google Scholar
  11. 11.
    Linss, M., andU. Weser. 1987. Redox behaviour and stability of active centre analogues of Cu2Zn2 Superoxide dismutase.Inorg. Chim. Acta 138:175–178.Google Scholar
  12. 12.
    Miesel, R., andU. Weser. 1989. Reactivity of active centre analogues of Cu2Zn2 Superoxide dismutase during the aqueous decay of K3CrO8.Inorg. Chim. Acta 160:119–121.Google Scholar
  13. 13.
    Miesel, R., H. J. Hartmann, Y. Li, andU. Weser. 1990. Reactivity of active center analogs of Cu2Zn2 Superoxide dismutase on activated polymorphonuclear leukocytes.Inflammation 14:409–419.Google Scholar
  14. 14.
    Hangarter, W. 1982.In Inflammatory Diseases and Copper. J. R. J. Sorenson, editor. Humana Press, Clifton, New Jersey. 439–449.Google Scholar
  15. 15.
    Weser, U., W. Paschen, andM. Younes. 1975. Singlet oxygen and superoxide dismutase.Biochem. Biophys. Res. Commun. 66:769–777.Google Scholar
  16. 16.
    Miesel, R., andU. Weser. 1988. Superoxide dismutase mimetic activity of low Mr copper chelates.Biol. Chem. Hoppe-Seyler 369:877.Google Scholar
  17. 17.
    Pathak, M. A., andP. C. Joshi. 1984. Production of active oxygen species (gO2 and O2 ) by psoralens and ultraviolet radiation (320–400 nm).Biochim. Biophys. Acta 798:115–119.Google Scholar
  18. 18.
    Bodaness, R. S., andP. C. Chan. 1977. Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide.J. Biol. Chem. 252:8554–8560.Google Scholar
  19. 19.
    Galanos, C., M. A. Freudenberg, andW. Reutter 1979. Galactosamine-induced sensitization to the lethal effects of endotoxin.Proc. Natl. Acad. Sci. U.S.A. 76:5939.Google Scholar
  20. 20.
    Hartmann, H. J., A. GÄrtner, andU. Weser. 1985. Copper dependent control of the enzymic and phagocyte induced degradation of some biopolymers, a possible link to systemic inflammation.Clin. Chim. Acta 152:95–103.Google Scholar
  21. 21.
    Richter, A., andU. Weser. 1988. Kinetics of the hydrogen peroxide dependent cleavage of Cu-thiolate centres in yeast Cu8-thionein.Inorg. Chim. Acta 151:145–148.Google Scholar
  22. 22.
    Hartmann, H. J., A. GÄrtner, AndU. Weser. 1984. Oxidation of Cu(I)-thionein by enzymically generated H2O2.Z. Physiol. Chem. 365:1355–1359.Google Scholar
  23. 23.
    Halliwell, B. 1985.In Inflammation. P. Venge and A. Lindbom, editors. Almqvist & Wiksell, Stockholm. 271–287.Google Scholar
  24. 24.
    Kreisl, C., andE. Lenofelder. 1984. Hyaluronic acid degradation by reactions producing activated oxygen species.Life Chem. Rep. 2:81–84.Google Scholar
  25. 25.
    Felix, K., H. J. Hartmann, andU. Weser. 1989. Cu(I)-thionein release from copper loaded yeast cells.Biol. Met. 2:50–54.Google Scholar
  26. 26.
    Linss, M., andU. Weser. 1986. The di-Schiff base of pyridine-2-aldehyde and 1,4-diaminobutane, a flexible Cu(I)/Cu(II) chelator of significant Superoxide dismutase mimetic activity.Inorg. Chim. Acta 125:117–121.Google Scholar
  27. 27.
    Dealvare, L. R., K. Goda, andT. Kimura, 1976. Mechanisms of superoxide anion scavenging reaction by bis-(salicylato)-copper(II) complex.Biochem. Biophys. Res. Commun. 69:687–694.Google Scholar
  28. 28.
    Riesenfeld, E. H., H. E. Wohlers, andW. A. Kutsch. 1905. Höhere Oxydationsproducte des Chroms.Chem. Ber. 30:1885–1898.Google Scholar
  29. 29.
    Weser, U., R.Miesel, W.Heizmann, and H. J.Hartmann. 1990. Cu2Zn2 Superoxide dismutase activity in air-dried Egyptian mummy of the New Kingdom.Z. Naturforsch. 45B: in press.Google Scholar
  30. 30.
    Miesel, R., and U.Weser. 1989. Chemiluminescence assays of Cu2Zn2 Superoxide dismutase mimeting assays.In Fifth Conference on Superoxide and Superoxide Dismutase. G. Czapski, editor. Jerusalem. 42.Google Scholar
  31. 31.
    Kimura, H., andM. Nakano. 1988. Highly sensitive and reliable chemiluminescence method for the assay of superoxide dismutase.FEBS Lett. 239:347–350.Google Scholar
  32. 32.
    Gerlach, U. 1957. Pathologischer übertritt von Sorbitol-dehyrogenase ins Blut bei Lebererkrankungen.Klin. Wochenschr. 35:1144.Google Scholar
  33. 33.
    Halliwell, B., J. M. C. Gutteridge, andO. I. Aruoma. 1987. The deoxyribose method: A simple “test tubeℍ assay for determination of rate constants for reactions of hydroxyl radicals.Anal. Biochem. 165:215.Google Scholar
  34. 34.
    Pathak, M. A., andP. C. Joshi. 1984. Production of active oxygen species (1gO2 and O2 ) by psoralens and ultraviolet radiation (320–400 nm).Biochim. Biophys. Acta 798:115–119.Google Scholar
  35. 35.
    Merkel, P. B., R. Nillson, andD. R. Kearns. 1972. Deuterium effects on singlet oxygen lifetimes in solutions. A new test of singlet oxygen reactions.J. Am. Chem. Soc. 94:1030–1031.Google Scholar
  36. 36.
    Yoshimitsu, T. 1984. Lipid peroxidation of human erythrocyte hemolysate. Effect of active oxygen scavengers and several antioxidants on Fe2+ or Fe3+ catalyzed lipid peroxidation of erythrocyte hemolysates.Hiroshima Daigaku Igaku Zasshi 32:547–559.Google Scholar
  37. 37.
    Bodaness, R. S. 1982. The potential role of NADPH-linked dehydrogenases in protection against singlet oxygen mediated cellular toxicity.Biochim. Biophys. Res. Commun. 108:1709–1715.Google Scholar
  38. 38.
    Halliwell, B., andJ. M. C. Gutteridge. 1985.In Free Radicals in Biology and Medicine. Clarendon Press, Oxford.Google Scholar
  39. 39.
    Weser, U., andH. J. Hartmann. 1984.In Copper Proteins and Copper Enzymes. R. Lontie, editor. CRC Press, Boca Raton. 151–174.Google Scholar
  40. 40.
    Lan, S., andB. Sarkar. 1971. Ternary coordination complexes between human serum albumin, copper(II) andl-histidine.J. Biol. Chem. 246:5938–5943.Google Scholar
  41. 41.
    Thornally, P. J., andM. Vašák. 1985. Possible role for metallothionein in protection against radiation induced oxidative stress.Biochim. Biophys. Acta 827:36–44.Google Scholar
  42. 42.
    Khan, A. U. 1977. Theory of electron transfer generation and quenching of singlet oxygen by Superoxide anion. The role of water in the dismutation of O2 .J. Am. Chem. Soc. 99:370–371.Google Scholar
  43. 43.
    Decker, K., andD. Keppler. 1974. Galactosamine-induced hepatitis.Rev. Physiol. Biochem. Pharmacol. 71:77.Google Scholar
  44. 44.
    Van Der Vusse, G. J., andR. S. Reneman. 1985. Pharmacological intervention in acute myocardial ischemia and reperfusion.TIPS 00:76–79.Google Scholar
  45. 45.
    Wendel, A., G. Tiegs, andC. Werner. 1987. Evidence for the involvement of a reperfusion injury in galactosamine/endotoxin-induced hepatitis in mice.Biochem. Pharmacol. 36:2637–2639.Google Scholar
  46. 46.
    Nathan, C. F. 1982. Secretion of oxygen intermediates. Role in effector functions of activated macrophages.Fed. Proc. 41:2206–2211.Google Scholar
  47. 47.
    Asada, M., andJ. T. Galambos. 1963. Sorbitol dehydrogenase and hepatocellular injury: An experimental and clinical study.Gastroenterology 44:578–582.Google Scholar
  48. 48.
    Oyanagui, Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity.Anal. Biochem. 142:290–296.Google Scholar
  49. 49.
    Harris, E. D. 1976. Copper-induced activation of aortic lysyl oxidase.Proc. Natl. Acad. Sci. U.S.A. 73:371–374.Google Scholar
  50. 50.
    Raju, K. S., G. Alessandri, M. Ziche, andP. M. Gullino. 1982. Ceruloplasmin, copper ions and angiogenesis.J. Natl. Cancer Inst. 69:1183–1188.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Ralf Miesel
    • 1
  • Hans -Jürgen Hartmann
    • 1
  • Ulrich Weser
    • 1
  1. 1.Anorganische Biochemie Physiologisch-Chemisches Institut der UniversitÄt TübingenTübingenFederal Republic of Germany

Personalised recommendations