Inflammation

, Volume 14, Issue 1, pp 11–30 | Cite as

Nonsteroidal antiinflammatory drugs exert differential effects on neutrophil function and plasma membrane viscosity

Studies in human neutrophils and liposomes
  • Steven B. Abramson
  • Bruce Cherksey
  • Delia Gude
  • Joanna Leszczynska-Piziak
  • Mark R. Philips
  • Lea Blau
  • Gerald Weissmann
Original Articles

Abstract

Nonsteroidal antiinflammatory drugs (NSAIDs) inhibit neutrophil functions via mechanisms separate from their capacity to inhibit prostaglandin synthesis. We have studied discrete events in the process of signal transduction: NSAIDs but not a related analgesic drug (acetaminophen), inhibited aggregation in response to the chemoattractants f-Met-Leu-Phe (FMLP), leukotriene B4, and C5a. NSAIDs, but not acetaminophen, inhibited binding of radiolabeled FMLP to purified neutrophil membranes. Gpp(NH)p, a GTPase insensitive analog of GTP, also inhibited the binding of FMLP but, paradoxically, enhanced superoxide anion generation and lysozyme release. The inhibition of ligand binding by NSAIDs did not correlate with their capacity to inhibit FMLP-induced increments in diacylglycerol (DG): piroxicam, but not salicylate effectively inhibited appearance of label ([3H]arachidonate, [14C] glycerol) in DG. Finally, NSAIDs exerted differential effects on the viscosity of neutrophil plasma membranes and multilamellar vesicles (liposomes): membrane viscosity was increased by piroxicam and indomethacin, decreased by salicylate, and unaffected by acetaminophen. Thus, the different effects of NSAIDs on discrete pathways are not due to their shared capacity to reduce ligand binding but rather to a capacity to uncouple postreceptor signaling events that depend upon the state of membrane fluidity.

Keywords

Indomethacin Acetaminophen Salicylate Piroxicam Arachidonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vane, J. R. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for aspirinlike drugs.Nature (London) New Biol. 231:232–235.Google Scholar
  2. 2.
    Abramson, S. B., H. Korchak, R. Ludewig, H. Edelson, K. Haines, R. Herman, L. Rider, S. Kimmel, andG. Weissmann. 1985. Modes of action of aspirin-like drugs.Proc. Natl. Acad. Sci. U.S.A. 82:7227–7231.Google Scholar
  3. 3.
    Walker, J., M. Smith, andA. W. Ford-Hutchinson. 1976. Anti-inflammatory drugs, prostaglandins and leukocyte migration.Agents Actions 6:602–606.Google Scholar
  4. 4.
    Perianin, A., M. Torres, M. Labro, andJ. Hakin. 1983. The different inhibitory effects of phenylbutazone on soluble and particle stimulation of human neutrophil oxidative burst.Biochem. Pharmacol. 32:2819–2822.Google Scholar
  5. 5.
    Perianin, A., M. Roch-Arveiller, J. P. Giround, andJ. Hakin. 1988. In vivo interaction of non-steroidal antiinflammatory drugs on the locomotion of neutrophils elicited by acute nonspecific inflammations in the rat-effect on indomethacin, ibuprofen and flurbiprofen.Biochem. Pharmacol. 33:2239–2243.Google Scholar
  6. 6.
    Hopkins, N. K., A. Lin, andR. Groman. 1983. Evidence for mediation of acyl-glycerol ether phsophorylcholine stimulation of adenosine 5'-(cyclic) monophophate levels in human polymorphonuclear leukocytes by leukotriene B4.Biochim. Biophys. Acta 763:276–283.Google Scholar
  7. 7.
    Ford-Hutchinson, A. W.. 1983. Neutrophil aggregating properties of PAF-acether and leukotriene B4.Int. J. Immunopharmacol. 13(5):17–21.Google Scholar
  8. 8.
    Simchowitz, L., J. Mehta, andI. Spilber T. 1979. Chemotactic factor-induced generation of superoxide radicals by human neutrophils.Arthritis Rheum. 22:755–763.Google Scholar
  9. 9.
    Kaplan, H., H. Edelson, H. Korchak, W. Given, S. Abramson, andG. Weissmann. 1984. Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo.Biochem. Pharmacol. 33:371–378.Google Scholar
  10. 10.
    Perez, H. D., F. Elfman, andS. Marder. 1987. Meclofenamate sodium monhydrate inhibits chemotactic factor-induced human polymorphonuclear leukocyte function: A possible explanation for its antiinflammatory effect.Arthritis Rheum. 30:1023–1031.Google Scholar
  11. 11.
    Bomalaski, J. S., R. Hirata, andM. Clark. 1986. Aspirin inhibits phospholipase C.Biochem. Biophys. Res. Commun. 139:115–121.Google Scholar
  12. 12.
    Minta, J., andM. J. Williams 1985. Some nonsteroidal antiinflammatory drugs inhibit the generation of superoxide anion by activated Polymorphs by blocking ligand-receptor interaction.J. Rheum. 12:751–757.Google Scholar
  13. 13.
    Bittman, R., andL. Blau. 1972. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes.Biochemistry 11:4831–4839.Google Scholar
  14. 14.
    Goldstein, I. M., M. Brai, A. G. Osler, andG. Weissmann. 1973. Lysosomal enzyme release from the human leukocyte: Mediation by the alternate pathway of complement activation.J. Immunol. 111:33–37.Google Scholar
  15. 15.
    Goldstein, I. M., M. Cerqueira, S. Lind, andH. B. Kaplan. 1977. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface.J. Clin. Invest. 59:249–254.Google Scholar
  16. 16.
    Buyon, J. P., S. B. Abramson, M. R. Philips, S. G. Slade, G. D. Ross, G. Weissmann, andR. J. Winchester. 1988. Dissociation between increased surface expression of Gp165/ 95 and homotypic neutrophil aggregation.J. Immunol. 140:3156–3160.Google Scholar
  17. 17.
    Boyum, A.. 1986. Isolation of mononuclear cells and granulocytes from human blood.Scand. J. Clin. Lab. Invest. Suppl. 97:77–89.Google Scholar
  18. 18.
    Koo, C., R. J. Lefkowitz, andR. Snyderman. 1983. Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes.J. Clin. Invest. 72:748–753.Google Scholar
  19. 19.
    Lowry, O. H., N. J. Rosebrough, A. L. Farr, andR. J. Randall. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275.Google Scholar
  20. 20.
    Reibman, J., H. M. Korchak, L. B. Vosshall, K. A. Haines, A. M. Rich, andG. Weissmann. 1988. Changes in diacylglycerol labeling, cell shape and protein phosphorylation distinguish “triggering” from “activation” of human neutrophils.J. Biol. Chem. 263:6322–6328.Google Scholar
  21. 21.
    Bligh, E.G., andW. J. Dyer. 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37:911–917.Google Scholar
  22. 22.
    Valentino, M., M. Governa, R. Fiorini, andG. Curatola. 1986. Changes of membrane fluidity in chemotactic peptide stimulated polymorphonuclear leukocytes.Biochem. Biophys. Res. Commun. 141:1151–1156.Google Scholar
  23. 23.
    Prendergast, F. G., R. P. Haugland, andP. J. Callahan. 1981. l-[4-(trimethylamine)phenyl]-6-phenylhexa-a,3,5,-triene: Synthesis, fluorescence properties, and scuse as a fluorescence probe of lipid bilayers.Biochemistry 20:7333–7338.Google Scholar
  24. 24.
    Yuli, I., A. Tomonaga, andR. Snyderman. 1982. Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers.Proc. Natl. Acad. Sci. U.S.A. 79:5906–5910.Google Scholar
  25. 25.
    Korchak, H. M., K. Vienne, L. E. Rutherford, C. Wilkenfeld, M. Finkelstein, andG. Weissmann. 1984. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux.J. Biol. Chem. 259:4076–4082.Google Scholar
  26. 26.
    Gabig, T. G., D. English, L. P. Akard, andSchall. 1987. Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine and fluoride.J. Biol. Chem. 262:1685–1690.Google Scholar
  27. 27.
    Kanaho, Y., Moss, andM. Vanghen. 1985. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum.J. Biol. Chem. 260:11493–11497.Google Scholar
  28. 28.
    Ross, G. D., andM. E. Medof. 1985. Membrane complement receptors specific for bound fragments of C3.Adv. Immunol. 37:217–267.Google Scholar
  29. 29.
    Berger, M., J. O'Shea, A. S. Cross, T. M. Folk, T. Chused, E. Brown, andM. Frank. 1984. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation.J. Clin. Invest. 74:1566–1571.Google Scholar
  30. 30.
    Schwartz, R., H. D. Ochs, P. G. Beatty, andJ. M. Harlin. 1985. A monoclonal antibody defined membrane antigen complex is required for neutrophil-neutrophil aggregation.Blood 65:1553–1556.Google Scholar
  31. 31.
    Wallis, W. J., D. D. Hiekstein, B. R. Schwartz, C. H. June, H. D. Ochs, P. G. Beatty, S. J. Klebanoff, andJ. M. Harlan. 1986. Monoclonal antibody-defined functional epitopes on the adhesion-promoting glycoprotein complex (CDW 18) of human blood neutrophils.Blood 67:1007–1013.Google Scholar
  32. 32.
    Goodman, L., andGilman. 1980. The Pharmacological Basis of Therapeutics, 6th ed. Macmillian, New York. 701–705.Google Scholar
  33. 33.
    Van Epps, E., S. Greiwe, J. Potter, andJ. Goodwin. 1986. Alterations in neutrophil superoxide production following piroxicam therapy in patients with rheumatiod arthritis.Inflammation 11:59–72.Google Scholar
  34. 34.
    Biemond, P., A. G. Swaak, J. A. Penders, C. M. Beindroff, andJ. F. Koster. 1986. Superoxide production by polymorphonuclear leucocytes in rheumatiod arthritis and osteoarthritis: In vivo inhibition by the antirheumatic drug piroxicam due to interference with the activation of the NADPH-oxidase.Ann. Rheum. Dis. 45:249–255.Google Scholar
  35. 35.
    Montecucco, C., A.Mazzone, D.Pasotti, R.Carorali, M.Longhi, D.Casilli, G.RiceVuti, andFratino. 1988. Effect of piroxicam therapy on granulocyte function and granulocyte elastase concentration in peripheral blood and synovial fluid of rheumatoid arthritis patients.Inflammation.Google Scholar
  36. 36.
    Palmoski, M. J., andK. D. Brandt. 1984. Effects of lasicylate and indomethacin on glycosaminoglycam and prostaglandin E2 synthesis in intact canine knee cartilage ex vivo.Arthritis Rheum. 27:398–403.Google Scholar
  37. 37.
    Palmoski, M. J., andK. D. Brandt. 1985. Correction of data on salicylate and indomethacim concentrations in cartilage.Arthritis Rheum. 28:237.Google Scholar
  38. 38.
    Smith, R. J., andS. Iden. 1980. Pharmacological modulation of chemotactic factor-elicited release of granule-associated enzymes from human neutrophils.Biochem. Pharmacol. 29:2389–2395.Google Scholar
  39. 39.
    Lombardino, J., I. Otterness, andE. Wiseman. 1975. Acidic antiinflammatory agents.Arzneim-Forsch 25:1629–1634.Google Scholar
  40. 40.
    Smith, M., andR. Dawkins. 1971. Salicylate and enzymes.J. Pharm. Pharmacol. 23:729–744.Google Scholar
  41. 41.
    Philips, M. R., J. P. Buyon, R. Winchester, G. Weissmann, andS. B. Abramson. 1988. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation.J. Clin. Invest. 82:495–501.Google Scholar
  42. 42.
    Stenson, W. F., J. Mehta, andI. Spilberg. 1984. Sulfasalazine inhibition of binding ofn- formyl-methionyl-leucyl-phenylalanine (FMLP) to its receptor on human neutrophils.Biochem. Pharmacol. 33:407–412.Google Scholar
  43. 43.
    Smith, C. D., R. J. Lefkowitz, andR. Snyderman. 1983. Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes.J. Clin. Invest. 72:748–753.Google Scholar
  44. 44.
    Smith, C. D., C. L. Cox, andR. Snyderman. 1980. Receptor coupled activation of phosphoinositide-specific phospholipase C by an N protein.Science 232:97–100.Google Scholar
  45. 45.
    Siegel, M., R. McConnell, andR. Cuatrecasas. 1979. Aspirin-like Drugs interfere with arachidonate metabolism by inhibition of the 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid peroxidase activity of the lipoxygenase pathway.Proc. Natl. Acad. Sci. U.S.A. 76:3774–3778.Google Scholar
  46. 46.
    Miyahara, J. T., andR. Karler. 1965. Effect of salicylate on oxidative phosphorylation and respiration of mitochondrial fragments.Biochem. J. 97:194–198.Google Scholar
  47. 47.
    Bomalaski, J. S., Alvarez, J. Touchstone, andR. Zurier. 1987. Alteration of uptake and distribution of eicosanoid precursor fatty acids by aspirin.Biochem. Pharmacol. 36:3249–3253.Google Scholar
  48. 48.
    Lucas-Heron, B., andC. Fontenaille. 1979. Urate transport in human red blood cells. Activation by ATP.Biochim. Biophys. Acta 553:284–294.Google Scholar
  49. 49.
    Kim, L. A., J. D. Tuama, Mann, andRoe. 1983. Saturable accumulation of the anioni herbicide 2,4-dichlorophenoxyacetic by rabbit choroid plexus: Early developmental origin and interaction with salicylates.J. Pharmacol. Exp. Ther. 225:699–704.Google Scholar
  50. 50.
    Snow, I. B., andA. R. Mass. 1979. Renal sites of natiuretic and uricosuric activity of ticrynafen in the mongrel dog.Nephron 23:15–20Google Scholar
  51. 51.
    Korchak, H. M., B. A. Eisenstat, J. E. Smolen, L. E. Rutherford, P. B. Dunham, andG. Weissmann. 1982. Stimulus-response coupling in the human neutrophil: The role of anion fluxes in degranulation.J. Biol, Chem. 257:6916–6922.Google Scholar
  52. 52.
    Weissmann, G., L. Azaroff, S. Davidson, andP. Dunham. 1986. Synergy between phorbol esters, l-oleyl-2-acetylglycerol, urushiol and calcium ionophore in eliciting aggregation of marine sponge cells.Proc. Natl. Acad. Sci. U.S.A. 83:2914–2918.Google Scholar
  53. 53.
    Weissmann, G., W. Reisen, S. Davidson, andM. Waite. 1988. Stimulus-response coupling in marine sponge cell aggregation: Lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids.Biochim. Biophys. Acta 960:351–364.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Steven B. Abramson
    • 1
  • Bruce Cherksey
    • 2
  • Delia Gude
  • Joanna Leszczynska-Piziak
  • Mark R. Philips
    • 1
  • Lea Blau
  • Gerald Weissmann
    • 1
  1. 1.Division of Rheumatology, Department of MedicineNYU Medical CenterNew York
  2. 2.Department of PhysiologyNYU Medical CenterNew York

Personalised recommendations