Journal of Applied Mechanics and Technical Physics

, Volume 22, Issue 5, pp 715–717 | Cite as

Investigation of the cleavage fracture of condensed solids

  • A. P. Rybakov
Article
  • 22 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Cleavage Fracture Condensed Solid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Kolsky, “Fracture under the effect of stress waves,” in: Atomic Fracture Mechanism [Russian translation], Metallurgizdat, Moscow (1963).Google Scholar
  2. 2.
    A. N. Dremin, G. I. Kanel', and S. A. Koldunov, “Investigation of cleavage in water, ethyl alcohol, and Plexiglas,” in: Combustion and Explosion (Materials of the Third All-Union Symposium on Combustion and Explosion) [in Russian], Nauka, Moscow (1972).Google Scholar
  3. 3.
    D. C. Erlich, D. C. Wooten, and R. C. Crewdson, “Dynamic tensile fracture of glycerol,” J. Appl. Phys.,42, No. 13 (1971).Google Scholar
  4. 4.
    G. A. Carlson and H. S. Levin, “Dynamic tensile strength of glycerol,” J. Appl. Phys.,46, No. 4 (1975).Google Scholar
  5. 5.
    G. A. Carlson, “Dynamic tensile strength of mercury,” J. Appl. Phys.,46, No. 9 (1975).Google Scholar
  6. 6.
    A. P. Rybakov, “Investigation of cleavage phenomena in condensed bodies under loading by oblique shocks,” in: Detonation. Critical Phenomena. Physicochemical Transformation in Shocks [in Russian], Chernogolovka (1978).Google Scholar
  7. 7.
    S. A. Dorodylin, A. I. Brichikov, et al., “X-Ray diffraction investigation of the process of the dispersion of easily melted metals during shock emergence on their free surface,” Fiz. Tverd. Tela,18, No. 9 (1976).Google Scholar
  8. 8.
    R. R. Breed, C. L. Mader, and D. Venable, “Technique for determination of dynamic tensile strength characteristics,” J. Appl. Phys.,38, No. 8 (1967).Google Scholar
  9. 9.
    F. F. Vitman, M. I. Ivanov, and B. S. Ioffe, “Resistance of plastic metals to fracture under a pulse loading,” Fiz. Metal. Metallov.,18, No. 5 (1964).Google Scholar
  10. 10.
    M. Kornfeld, Elasticity and Strength of Fluids [Russian translation], Gostekhizdat, Moscow-Leningrad (1951).Google Scholar
  11. 11.
    A. T. J. Hayward, “Negative pressure in liquids: can it be harnessed to serve man?” Am. Scientist,59, 434 (1971).Google Scholar
  12. 12.
    M. I. Garbar, M. S. Akutin, and N. M. Egorov (eds.), Handbook on Plastics [in Russian], Khimiya, Moscow (1967).Google Scholar
  13. 13.
    A P. Rybakov and V. P. Muzychenko, “Mechanics of cleavage fracture under shock loading,” in: Reports to the Third All-Union Symposium on Pulsed Pressures [in Russian], Moscow (1979).Google Scholar
  14. 14.
    Yu. I. Fadeenko, “Time fracture criteria in solid dynamics,” in: Dynamic Problems in the Mechanics of Continuous Media [in Russian], No. 32, Izd. Inst. Gidrodinamiki, Novosibirsk (1977).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  16. 16.
    D. E. Grady and R. E. Hollenbarch, “Rate-controlling processes in the brittle failure of rock,” SAND-760659, Sandia Lab., Albuquerque, N. M. (1977). Cited in V. N. Nikiforovskii, L. D. Lifshits, and I. A. Sizov, “Mechanical properties of rock. Deformation and fracture,” in: Mechanics of a Deformable Solid [in Russian], Vol. 11, VINITI, Moscow (1978), p. 123.Google Scholar
  17. 17.
    N. A. Zlatin, G. S. Pugachev, et al., “Time dependence of the strength of materials under microsecond range endurances,” Fiz. Tverd. Tela,17, No. 9 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • A. P. Rybakov
    • 1
  1. 1.Daugavpils

Personalised recommendations