Advertisement

Infrared spectra of catalysts and adsorbed molecules

Communication 4. Dimethyl ether on the surface of aluminum oxide
  • V. I. Yakerson
  • L. I. Lafer
  • V. Ya. Danyushevskii
  • A. M. Rubinshtein
Inorganic and Analytical Chemistry

Conclusions

  1. 1.

    The IR spectrum of dimethyl ether, adsorbed on hydrated and dehydrated surfaces of γ-Al2O3, was studied in the region of 4000-1000 cm−1.

     
  2. 2.

    Several forms of adsorption, differing in conditions of formation and thermal stability, were found in the interval 20–450°: adsorption on hydroxyl groups of the surface, bonded by a hydrogen bond; interaction with the formation of a coordination bond (oxygen of the ether with aluminum atom of the lattice); a structure with activation of hydrogen of the methyl group by the surface and carbonate -carboxylate structures.

     
  3. 3.

    The “free” hydroxyls of the surface do not take part in adsorption.

     
  4. 4.

    Adsorption of dimethyl ether on a dehydrated aluminum oxide surface proceeds with splitting out of water, rehydrating the surface.

     

Keywords

Hydrogen Aluminum Hydrated Hydroxyl Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Yakerson, L. I. Lafer, and A. M. Rubinshtein, Zh. Prikl. Spektroskopii,5, 360 (1966).Google Scholar
  2. 2.
    V. I. Yakerson, L. I. Lafer, and A. M. Rubinshtein, Dokl. AN SSSR,173, 622 (1967).Google Scholar
  3. 3.
    V. I. Yakerson, L. I. Lafer, and A. M. Rubinshtein, Dokl. AN SSSR,17, 111 (1967).Google Scholar
  4. 4.
    E. B. Svetlanov and R. M. Flid, Zh. Fiz. Khimii,40, 3055 (1966).Google Scholar
  5. 5.
    L. Bellamy, Infrared Spectra of Complex Molecules [Russian translation], IL, 1963.Google Scholar
  6. 6.
    L. I. Lafer and V. I. Yakerson, Zh. Prikl. Spektroskopii,4, 468 (1966).Google Scholar
  7. 7.
    J. P. Perchard, M. Th. Forel, and M. L. Josien, J. chim. phys. et phys. chim. biol.,61, 632 (1964).Google Scholar
  8. 8.
    M. Falk and E. Whalley, J. Chem. Phys.,34, 554 (1961).Google Scholar
  9. 9.
    Y. Kanazawa and K. Nukada, Bull. Chem. Soc. Japan,35, 612 (1962).Google Scholar
  10. 10.
    I. M. Ginzburg and M. A. Abramovich, Optics and Spectroscopy, Collection of Articles [in Russian], Izd. AN SSSR (1963), p. 230.Google Scholar
  11. 11.
    J. P. Perchard, M. Th. Forel, and M. L. Josien, J. chim. phys. et phys. chim. biol.,61, 645, 652, 660 (1964).Google Scholar
  12. 12.
    R. J. Freymann, Spectre infrarouge et structure moleculaires, Paris (1947).Google Scholar
  13. 13.
    E. Taillandier and M. Taillandier, Compt. rend.,257, 522 (1963).Google Scholar
  14. 14.
    J. M. Begun, W. H. Fletcher, and A. A. Palko, Spectrochim. acta,18, 655 (1962).Google Scholar
  15. 15.
    J. Lascomba, J. le Calvé, and M.-Th. Forel, Compt. rend.,258, gr. 6, 611 (1964).Google Scholar
  16. 16.
    R. G. Greenler, J. Chem. Phys.,37, 2094 (1962).Google Scholar
  17. 17.
    V. N. Filimonov, Collection: Elementary Photo Processes in Molecules [in Russian], “Nauka,” 330 (1966).Google Scholar
  18. 18.
    L. Szobei, Compt. rend.,218, 315, 834 (1944).Google Scholar
  19. 19.
    Spectroscopic Methods in the Chemistry of Complex Compounds, Collection of Articles Edited by V. M. Vdovenko [in Russian], “Khimiya,” 136 (1964).Google Scholar
  20. 20.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds [Russian translation], “Mir,” 1966.Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • V. I. Yakerson
    • 1
  • L. I. Lafer
    • 1
  • V. Ya. Danyushevskii
    • 1
  • A. M. Rubinshtein
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRUSSR

Personalised recommendations