Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 109, Issue 5, pp 1049–1057 | Cite as

Ternäre Thallium-Übergangsmetall-Chalkogenide mit ThCr2Si2-Struktur

  • Kurt Klepp
  • Herbert Boller
Anorganische, Struktur- und physikalische Chemie

Ternary thallium transition metal chalcogenides with theThCr 2 Si 2 -structure

Abstract

The existence of ternary chalcogenides of general composition TlT2X2 (T=Fe,Co,Ni,X=S;T=Fe,Co,Ni,Cu,X=Se) crystallizing in the ThCr2Si2-structure type has been established. The crystal structure of TlCo2S2 was refined from single crystal diffractometer data. The dimensions of the tetragonal unit cells are: TlFe2S2;a=3.755 (1),c=13.35 (1) Å; TlCo2S2:a= =3.7410 (5),c=12.956(5) Å; TlNi2S2:a=3.792 (1),c=12.77 (1) Å; TlFe2Se2:a=3.890 (1),c=14.00(1) Å; TlCo2Se2:a=3.847 (1),c=13.54 (1) Å; TlNi2Se2:a=3.866 (1),c=13.41 (1) Å; TlCu2Se2:a=3.852 (1),c=14.01 (1) Å. These phases are the first chalcogenides found to crystallize in the ThCr2Si2-structure type. Unlike the already known representatives of this structure type they show a pronounced partial ionic character. Interatomic distances as well as the relations to the alkali thiometallates of Co and Mn are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Z. Ban undM. Sikirica, Acta Cryst.18, 594 (1965).Google Scholar
  2. 2.
    J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickinson undS. R. Hall, Computer Science Center, Univ. of Maryland.Google Scholar
  3. 3.
    D. T. Cromer undJ. B. Mann, Acta Cryst.A24, 321 (1968).Google Scholar
  4. 4.
    Z. Ban undM. Sikirica, Z. anorg. allg. Chem.356, 96 (1967).Google Scholar
  5. 5.
    W. Rieger undE. Parthé, Mh. Chem.100, 444 (1969).Google Scholar
  6. 6.
    B. Eisenmann, N. May, W. Müller, H. Schäfer, A. Weiss, J. Winter undG. Ziegleder, Z. Naturforsch.25 b, 1850 (1970).Google Scholar
  7. 7.
    N. May undH. Schäfer, Z. Naturforsch.27 b 864 (1972).Google Scholar
  8. 8.
    W. Dörrenscheidt, N. Niess undH. Schäfer, Z. Naturforsch31 b, 890 (1976).Google Scholar
  9. 9.
    R. Marazza, R. Ferro, G. Rambaldi undG. Zanicchi, J. Less Common Metals53, 193 (1977).Google Scholar
  10. 10.
    H. Schlenger, H. Jacobs undR. Juza, Z. anorg. allg. Chem.385, 177 (1971).Google Scholar
  11. 11.
    A. Mewis, Z. Naturforsch.32 b, 351 (1977).Google Scholar
  12. 12.
    W. Bronger undP. Böttcher, Z. anorg. allg. Chem.390, 1 (1972).Google Scholar
  13. 13.
    R. M. Imamov undZ. G. Pinsker, Kristallografija [russ.]9, 743 (1964).Google Scholar
  14. 14.
    A. Kutoglu, Naturwissenschaften61, 125 (1974).Google Scholar
  15. 15.
    R. Wandji undJ. K. Kom, C. R. hebdomad. Sé. Acad. Sci.275 C, 813 (1972).Google Scholar
  16. 16.
    Y. Laurent, P. Picot undR. Pierrot, Bull. Soc. franc. Miner.-Crist.92, 38 (1969).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Kurt Klepp
    • 1
  • Herbert Boller
    • 2
  1. 1.Institut für Anorganische ChemieUniversität WienWienÖsterreich
  2. 2.Institut für Physikalische ChemieUniversität WienWienÖsterreich

Personalised recommendations