Dynamic problems of the theory of cleavages in a beam approximation

  • A. M. Mikhailov
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Dynamic Problem Beam Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Barenblatt, “A mathematical theory of equilibrium cleavages formed during a brittle failure,” PMTF, no. 4, 1961.Google Scholar
  2. 2.
    J. J. Gilman,“Cleavage, ductility and tenacity in crystals,” in Fracture (ed. by B. L. Averbach et al.), Wiley, N. Y. 193–221, 1959.Google Scholar
  3. 3.
    J. C. Suits, “Cleavage, ductility and tenacity in crystals,” in: Fracture (ed. by B. L. Averbach et al.), Wiley, N. Y. 223–224, 1959, 251, 1963.Google Scholar
  4. 4.
    J. P. Berry, “Some kinetic considerations on the Griffith criterion for fracture. I. Equations of motion at constant force,” J. Mech. Phys. Solids, vol. 8, no. 3, 194–206, 1960.Google Scholar
  5. 5.
    J. P. Berry, “Some kinetic considerations on the Griffith criterion for fracture. II. Equations of motion at constant deformation,” J. Mech. Phys. Solids, vol. 8, no. 3, 194–206, 1960.Google Scholar
  6. 6.
    J. Krause, “Failure criterion for fracture during cleavage,” J. Appl. Phys., vol. 35, no. 2, 461–462, 1960.Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Mechanics [in Russian], Fizmatgiz, 1958.Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, Theory of Elasticity [in Russian], Nauka, 1965.Google Scholar
  9. 9.
    V. I. Smirnov, A Course of Higher Mathematics [in Russian], vol. 4, chapter 2, Gostekhizdat, 1957.Google Scholar

Copyright information

© The Faraday Press, Inc. 1969

Authors and Affiliations

  • A. M. Mikhailov
    • 1
  1. 1.Novosibirsk

Personalised recommendations