Influence of the shape of the supersonic part of a nozzle on the rate of redistribution of molecules over vibrational levels in the active medium of a CO gasdynamic laser

  • N. Ya. Vasilik
  • A. D. Margolin
  • V. M. Shmelev
Article
  • 21 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Active Medium Vibrational Level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. S. Watt, “Carbon monoxide gas dynamic laser,” Appl. Phys. Lett.,18, No. 11 (1971).Google Scholar
  2. 2.
    R. L. McKenzil, “Laser power at 5 Μ from the supersonic expansion of carbon monoxide,” Appl. Phys. Lett.,17, No. 10 (1970).Google Scholar
  3. 3.
    V. A. Belavin, G. V. Abrosimov, et al., “Coefficient of amplification of a weak signal in a CO gasdynamic laser,” Zh. Tekh. Fiz.,47, No. 3 (1977).Google Scholar
  4. 4.
    G. A. Andronov, A. G. Armer, et al., “A gasdynamic laser based on a CO-Ar mixture,” Kvantovaya Elektron. (Moscow),4, No. 8 (1977).Google Scholar
  5. 5.
    B. S. Aleksandrov, G. A. Andronov, et al., “Energy characteristics of the working media of CO gasdynamic lasers,” Teplofiz. Vys. Temp.,16, No. 5 (1978).Google Scholar
  6. 6.
    V. F. Gavrikov, A. P. Dronov, et al., “A carbon monoxide gasdynamic laser,” Kvantovaya Elektron. (Moscow),1, No. 1 (1974).Google Scholar
  7. 7.
    V. F. Gavrikov, A. P. Dronov, et al., “An experimental investigation of gasdynamic lasers based on mixtures of CO with inert gases,” Kvantovaya Elektron. (Moscow),2, No. 1 (1975).Google Scholar
  8. 8.
    J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys.,42, No. 7 (1971).Google Scholar
  9. 9.
    K. Nanbu, “Vibrational relaxation of anharmonic oscillation in expansion nozzles,” J. Phys. Soc. Jpn.,40, No. 5 (1976).Google Scholar
  10. 10.
    V. F. Gavrikov, A. P. Dronov, et al., “Vibrational relaxation of carbon monoxide in supersonic nozzles,” Kvantovaya Elektron. (Moscow),3, No. 7 (1976).Google Scholar
  11. 11.
    N. Ya. Vasilik, V. A. Vakhnenko, et al., “Energy characteristics of a carbon monoxide gasdynamic laser,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1978).Google Scholar
  12. 12.
    D. Williams, D. C. Wenstrand, et al., “Collisional broadening of infrared absorption lines,” Mol. Phys.,20, No. 5 (1971).Google Scholar
  13. 13.
    R. H. Hunt, R. A. Tath, and E. K. Plyler, “High-resolution determination of the width of self-broadened lines of carbon monoxide,” J. Chem. Phys.,49, No. 9 (1968).Google Scholar
  14. 14.
    N. G. Basov, V. I. Dolinina, et al., “A theoretical investigation of the generation characteristics of a CO electric-ionization laser,” Preprint Fiz. Inst. Akad. Nauk SSSR No. 1 (1976).Google Scholar
  15. 15.
    Yu. B. Konev, I. V. Kochetov, et al., “An analysis of the kinetic processes determining the parameters of CO lasers,” Preprint Inst. At. Energ. No. 2821 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • N. Ya. Vasilik
    • 1
  • A. D. Margolin
    • 1
  • V. M. Shmelev
    • 1
  1. 1.Moscow

Personalised recommendations