Soviet Physics Journal

, Volume 25, Issue 7, pp 655–659 | Cite as

Separation of variables in 0(3)-invariant wave equations for quadrupole coordinates

  • A. V. Konarev
Physics of Elementary Particles and Field Theory


Linear, 0(3) invariant equations for a multicomponent wave function, which depends on quadrupole coordinates, are examined. Vibrational, rotational, and spin parts in the Hamiltonian are separated, on which basis angular and internal variables are separated.


Wave Function Wave Equation Internal Variable Invariant Equation Spin Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Bohr, Kgl. Danske Videnskab. Selskab. Mat-Fys. Medd.,26, No. 14 (1952); A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab. Mat-Fys. Medd.,27, No. 16, (1953).Google Scholar
  2. 2.
    S. A. Vladimirov, Symmetry Groups of Differential Equations and Relativistic Fields [in Russian], Atomizdat, Moscow (1979).Google Scholar
  3. 3.
    I. M. Gel'fand, R. A. Minlos, and F. Ya. Shapiro, Representations of the Rotation Group and the Lorentz Group [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  4. 4.
    I. Aizenberg and V. Grainer, Models of Nuclei. Collective and Single Particle Phenomenon [in Russian], Atomizdat, Moscow (1975).Google Scholar
  5. 5.
    L. V. Ovsyaninkov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  6. 6.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Nauka, Leningrad (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. V. Konarev
    • 1
  1. 1.Institute of Control ProblemsAcademy of Sciences of the USSRUSSR

Personalised recommendations