Skip to main content
Log in

Rotational relaxation of molecular nitrogen in a freely expanding jet

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In connection with the assumption about the possibility of producing a gasdynamic laser at rotational transitions of diatomic molecules (1, 2] and a gasdynamic condense-laser by using the phenomenon of condensation to produce the population inversion [3–5], a quantitative description of the kinetics of the rotational relaxation of the simplest diatomic molecules is necessary. In contrast to the traditional approach in gasdynamics and the theory of transport processes, when one parameter (the rotational relaxation time) is used in the description of rotational relaxation, a substantially more detailed description at the population level of the individual rotational states is required in solving spectroscopy and laser physics problems. This paper is devoted to a theoretical and experimental investigation of the rotational relaxation of nitrogen in a free, low density jet under conditions when a substantial nonequilibrium holds in the rotational level populations. On the basis of representations developed earlier [1, 6], a model is constructed for a relaxing gas which yields the magnitude of the population of individual rotational levels. The selection of a molecular nitrogen free jet as a subject for investigation is explained by the fact that the gasdynamics of such a flow has been studied well [7]. Moreover, at this time diagnostic methods have been developed to determine the molecule concentrations at many (k≤20) rotational levels [8]; hence, a jet is a good object on which a detailed comparison between theory and experiment can be made, as is done in this paper. Separation of the translational and rotational relaxation processes is allowed in the theoretical description of the flow with relaxation studied in this paper on the basis of the fact that the buildup of a Maxwell molecule velocity distribution because of elastic collisions occurs more rapidly than the redistribution of molecules at the rotational levels because of inelastic collisions. Such an approach is apparently valid for molecular hydrogen with a large value of the rotational quantum [9]. A model with separation of the processes is hypothetical for nitrogen molecules whose rotational constant is ≈ 1/20 that for hydrogen, and is confirmed in this paper by comparing computations with experiment. It is hence assumed that rotational relaxation proceeds in an N2 molecule stream with a known temperature, density, and velocity distribution obtained from measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. N. Vargin, N. A. Ganina, V. K. Konyukhov, A. I. Lukovnikov, and V. L Selyakov, “Obtaining an inversion at rotational levels of diatomic molecules during adiabatic gas expansion,” Kvantovaya Elektron.,2, No. 3 (1975).

  2. S. A. Reshetnyak, “Questions of kinetics in plasma and rotational transition lasers,” in: Theoretical Problems of Spectroscopy and Gasdynamic Lasers [in Russian], Vol. 83, Fiz. Inst. Akad. Nauk SSSR, (1975).

  3. V. K. Konyukhov, A. M. Prokhorov, V. I. Tikhonov, and V. N. Faizulaev, “Condensate-laser,” Kvantovaya Elektron.,2, No. 9 (1975).

  4. N. V. Karelov, A. K. Rebrov, and R. G. Sharafutdinov, “Population of rotational levels of the nitrogen molecule for nonequilibrium condensation in a freely expanding gas,” Preprint No. 20-77, Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977).

    Google Scholar 

  5. N. V. Karelov, A. K. Rebrov, R. G. Sharafutdinov, “Effect of upper rotational level population in the process of free expansion of a gas with clusters,” Pis'ma Zh. Eksp. Teor. Fiz.,27, No, 1 (1978).

  6. A. N. Vargin, N. A. Ganina, V. K. Konyukhov, and V. I. Selyakov, “Computation of the rotational transition probability of diatomic molecules for collisions with heavy particles,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1975).

  7. V. V. Vblchkov, A. V. Ivanov, N. I. Kislyakov, A. K. Rebrov, V. A. Sukhnev, and R. F. Sharafutdinov, “Low density jets behind a sonic nozzle with large pressure drops,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1973).

  8. V. N. Borzenko, N. V. Karelov, A. K. Rebrov, and R. G. Sharafutdinov, “Experimental investigation of the molecule rotational level populations in a free nitrogen jet,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1976).

  9. H. Rabitz and S.-H. Lam, “Rotational energy relaxation in molecular hydrogen,” Chem. Phys.,63, No. 8 (1975).

  10. A. A. Bochkarev, E. G. Velikanov, A. K. Rebrov, R. G. Sharafutdinov, and V. N. Yarygin, “Gasdynamic low density apparatus,” in: Experimental Methods in Rarefied Gasdynamics [in Russian], Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1974).

    Google Scholar 

  11. A. E. Zarvin and R. G. Sharafutdinov, “Molecular beam generator for rarefied gas flow investigations,” in: Rarefied Gasdynamics [in Russian], Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, (1976).

  12. N. V. Karelov, A. V. Kosov, A. K. Rebrov, and R. G. Sharafutdinov, “Study of the low density jet displacement zone,” in: Rarefied Gasdynamics [in Russian], Izd. Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1976).

    Google Scholar 

  13. D. Golomb, R. E. Good, A. B. Bailey, N. N. Basby, and R. Dawbarn, “Dimers, clusters, and condensation in free jets. II,” Chem. Phys.,57, No. 9 (1972).

  14. H. Askhenas and F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in: Rarefied Gas Dynamics. Fourth Int. Symp. Proc., Vol. 2, Academic Press, New York-London (1966).

    Google Scholar 

  15. A. N. Vargin, N. A. Ganina, É. K. Kamalova, V. K. Konyukhov, and A. I. Lukovnikov, “Computation of the rotational transition probabilities for collisions between molecules. Morse potential,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1978).

  16. Ya. P. Tenis, “Progress in molecular force studies and description of phenomena in gas flows,” in: Rarefied Gas Dynamics [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  17. S. I. Cubley and E. A. Mason, “Atom-molecule and molecule-molecule potentials and transport collision integrals,” Phys. Fluids,18 No. 9 (1975).

  18. J. Clark and M. McChesney, Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 73–83, May–June, 1979.

The authors note that the molecular-beam measurement data were obtained by R. G. Sharafutdinov and A. E. Zarvin and are used with the kind agreement of the latter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargin, A.N., Ganina, N.A., Karelov, N.V. et al. Rotational relaxation of molecular nitrogen in a freely expanding jet. J Appl Mech Tech Phys 20, 317–324 (1979). https://doi.org/10.1007/BF00911687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00911687

Keywords

Navigation