Temperature dependence of the fracture strength of glycerine

  • M. A. Ivanov


Glycerine Mathematical Modeling Mechanical Engineer Industrial Mathematic Fracture Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Kornfel'd, Elasticity and Strength of Liquids [in Russian], Gostekhizdat, Moscow (1951).Google Scholar
  2. 2.
    J. Frenkel', Kinetic Theory of Liquids, Peter Smith.Google Scholar
  3. 3.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press.Google Scholar
  4. 4.
    A. N. Dremin, G. I. Kanel', and S. A. Koldunov, “Investigation of fracture in water, ethyl alcohol, and Plexiglas,” in: Combustion and Explosion [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    A. P. Rybakov, “Investigation of fracture phenomena in condensed bodies,” in: Critical Phenomena. Physicochemical Transformations [in Russian], Izd. Akad. Nauk SSSR, Chernogolovka (1978).Google Scholar
  6. 6.
    T. H. Bull, “The tensile strengths of liquids under dynamic loading,” Phil. Mag.,1, Ser. 9, No. 2 (1956).Google Scholar
  7. 7.
    D. C. Erlich, D, C. Woolen, and R. C. Crewdson, “Dynamic tensile [sic] of glycerol,” J. Appl. Phys.,42, No. 13 (1971).Google Scholar
  8. 8.
    G. A. Carlson and K. W. Henry, “Technique for studying dynamic tensile failure in liquids: application to glycerol,” J. Appl. Phys.,44, No. 5 (1973).Google Scholar
  9. 9.
    G. A. Carlson, “Dynamic tensile strength of mercury,” J. Appl. Phys.,46, No. 9 (1975).Google Scholar
  10. 10.
    G. A. Carlson and H. S. Levine, “Dynamic tensile strength of a glycerol,” J. Appl. Phys.,46, No. 4 (1975).Google Scholar
  11. 11.
    W. Kauzman, “The nature of the glassy state and the behavior of liquids at low temperatures,” Chem. Rev.,43, No. 2 (1948).Google Scholar
  12. 12.
    M. A. Isakovich and I. A. Chaban, “Wave propagation in highly viscous liquids,” Zh. Eksp. Teor. Fiz.,50, No. 5 (1966).Google Scholar
  13. 13.
    R. Piccerelly and T. A. Littovitz, “Ultrasonic shear and compressional relaxation in liquid glycerol,” J. Acoust. Soc. Am.,29, No. 9 (1957).Google Scholar
  14. 14.
    B. A. Belinskii and L. M. Lazarenko, “Absorption and dispersion of ultrasound in a mixture of abietic acid,” Akust. Zh.,21, No. 3 (1975).Google Scholar
  15. 15.
    G. Nahmaini, “Experimental investigation of scabbing produced in mild steal plates by plane stress waves,” in: Les Ondes de Detonation, Paris (1961).Google Scholar
  16. 16.
    Yu. I. Tarasov, “Investigation of the dependence of the failure time on the tensile load for steel and copper,” Dokl. Akad. Nauk SSSR,165, No. 2 (1965).Google Scholar
  17. 17.
    L. V. Al'tshuler, S. A. Novikov, and I. I. Divnov, “Relation of critical failure stresses to failure time with explosive loading of metals,” Dokl. Akad. Nauk SSSR,166, No. 1 (1966).Google Scholar
  18. 18.
    A. G. Ivanov and V. N. Mineev, “Scale criteria for brittle failure of structures,” Dokl. Akad. Nauk SSSR,220, No. 3 (1975).Google Scholar
  19. 19.
    A. G. Ivanov, “Fracture in the quasiacoustic approximation,” Fiz. Goreniya Vzryva, No. 5 (1979).Google Scholar
  20. 20.
    A. G. Ivanov and V. N. Mineev, “Scale effects in failure,” Fiz. Goreniya Vzryva, No. 5 (1979).Google Scholar
  21. 21.
    M. A. Ivanov, “Temperature dependence of the specific work of failure in copper and steel,” Fiz. Goreniya Vzryva, No. 4 (1979).Google Scholar
  22. 22.
    Yu. V. Bat'kov, S. A. Novikov, et al., “Effect of the temperature of a sample on the magnitude of the failure stresses with fracture in AMG-6 aluminum alloy,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • M. A. Ivanov
    • 1
  1. 1.Moscow

Personalised recommendations