Monatshefte für Chemie / Chemical Monthly

, Volume 105, Issue 1, pp 91–104 | Cite as

Molecular dynamics, root-mean-square amplitudes, statistical thermodynamics, and molecular polarizability for the isotopic species of dioxygen monofluoride

  • Z. Singh
  • G. Nagarajan
Anorganische, Struktur- und Physikalische Chemie


A brief survey of vibrational spectral studies for the four isotopic species of dioxygen monofluoride has been made. On the basis of group theoretical considerations, symmetry coordinates have been constructed and kinetic energy matrices (orG matrix elements), potential energy matrices, and secular equations have been derived to calculate the valence force constants. The mean-square amplitudes and root-mean-square amplitudes for both the bonded and nonbonded atom pairs have been calculated at the room temperature. On the basis of a rigid rotator and harmonic oscillator model, enthalpy function, free enthalpy function, entropy, and heat capacity have been calculated from 200 to 2000 °K for all the four isotopic species. On the basis of a delta-function potential model based on the variational method and delta-function electronic wave functions, the bond parallel components, the bond perpendicular components, the contribution by the nonbonding electrons, and the average molecular polarizability have been calculated. The results obtained from these studies clearly confirm a double bond character for the oxygen—oxygen distance and a bond order of less than one-half for the oxygen—fluorine distance. The results have been discussed in relation to the nature of the two characteristic bonds involved in this molecular system.


Dioxygen Energy Matrice Molecular Polarizability Double Bond Character Bond Parallel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand. 1960.Google Scholar
  2. 2.
    S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes. Amsterdam: Elsevier. 1968.Google Scholar
  3. 3.
    P. N. Noble andG. C. Pimental, J. Chem. Phys.44, 3641 (1966).Google Scholar
  4. 4.
    R. D. Sprateley, J. J. Turner, andG. C. Pimentel, J. Chem. Phys.44, 2063 (1966).Google Scholar
  5. 5.
    Ta-You Wu, Vibrational Spectra and Structure of Polyatomic Molecules. Kun-Ming, China: National University of Peking. 1939.Google Scholar
  6. 6.
    E. B. Wilson, Jr., J. Chem. Phys.7, 1047 (1939);9, 76 (1941).Google Scholar
  7. 7.
    L. Pierce, R. Jackson, andN. Di Cianni, J. Chem. Phys.35, 2240 (1961).Google Scholar
  8. 8.
    A. Arkell, J. Amer. Chem. Soc.87, 4057 (1965).Google Scholar
  9. 9.
    E. Hirota, J. Chem. Phys.28, 839 (1958).Google Scholar
  10. 10.
    I. L. Karle, J. Chem. Phys.23, 1739 (1955).Google Scholar
  11. 11.
    L. S. Bartell andK. Kuchitsu, J. Phys. Soc. Japan17, 20 (1962).Google Scholar
  12. 12.
    K. S. Pitzer, Quantum Chemistry. New York: Prentice-Hall. 1953.Google Scholar
  13. 13.
    K. Rüdenberg andR. G. Parr, J. Chem. Phys.19, 1268 (1951).Google Scholar
  14. 14.
    K. Rüdenberg andC. W. Scherr, J. Chem. Phys.21, 1565 (1953).Google Scholar
  15. 15.
    A. A. Frost, J. Chem. Phys.22, 1613 (1954);23, 985 (1955);25, 1150 (1956).Google Scholar
  16. 16.
    A. A. Frost andF. A. Leland, J. Chem. Phys.25, 1154 (1956).Google Scholar
  17. 17.
    E. R. Lippincott, J. Chem. Phys.23, 603 (1955);26, 1678 (1957).Google Scholar
  18. 18.
    E. R. Lippincott andM. O. Dayhoff, Spectrochim. Acta16, 807 (1960).Google Scholar
  19. 19.
    E. R. Lippincott andJ. M. Stutman, J. Phys. Chem.68, 2926 (1964).Google Scholar
  20. 20.
    G. Nagarajan, Acta Phys. Polon.28, 869 (1956);29, 841 (1966);30, 743 (1966);43A, 95 (1973).Google Scholar
  21. 21.
    G. Nagarajan, Indian J. Pure Appl. Phys.4, 97, 244 (1966).Google Scholar
  22. 22.
    G. Nagarajan, Indian J. Phys.39, 405 (1965);40, 319 (1966).Google Scholar
  23. 23.
    G. Nagarajan, Z. Physik. Chem.234, 406 (1967);250, 329 (1972).Google Scholar
  24. 24.
    G. Nagarajan, Z. Naturforschung,21 a, 238 (1966).Google Scholar
  25. 25.
    G. Nagarajan, Acta Phys. Austriaca21, 225 (1966).Google Scholar
  26. 26.
    L. Pauling, The Nature of the Chemical Bond. Ithaca, N. Y.: Cornell University Press. 1960.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Z. Singh
    • 1
  • G. Nagarajan
    • 1
  1. 1.Department of PhysicsSouthern UniversityBaton RougeUSA

Personalised recommendations