Theory of interaction of gravity waves with hydrodynamic turbulence

  • A. G. Sazontov


Mathematical Modeling Mechanical Engineer Industrial Mathematic Gravity Wave Hydrodynamic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. S. Monin, “Turbulence and microstructure in ocean,” Usp. Fiz. Nauk,109, No. 2 (1973).Google Scholar
  2. 2.
    A. S. Monin, “Nature of turbulence,” Usp. Fiz. Nauk,125, No. 1 (1978).Google Scholar
  3. 3.
    V. S. L'vov and A. V. Mikhailov, “Scattering and mutual interaction of sound in a turbulent medium,” Zh. Eksp. Teor. Fiz.,75, No. 4, (1978).Google Scholar
  4. 4.
    V. S. L'vov and A. V. Mikhailov, “Sound and hydrodynamic turbulence in compressible fluid,” Zh. Eksp. Teor. Fiz.,74, No. 4 (1978).Google Scholar
  5. 5.
    S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskii, “Influence of vortices on the acoustic turbulence spectrum,” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979).Google Scholar
  6. 6.
    H. W. Wyld, “Formulation of the theory of turbulence in incompressible fluid,” Ann. Phys.,14, No. 2 (1961).Google Scholar
  7. 7.
    V. E. Zakharov, “Stability of finite amplitude waves at the surface of a deep liquid,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1968).Google Scholar
  8. 8.
    V. M. Kontorovich, Kh. Kravchik, and V. Time, “Hamiltonian description of nonpotential motion in the presence of free surface in conventional and magnetohydrodynamics,” Preprint IRE, Akad. Nauk Ukr. SSR, No. 158, Khar'kov (1980).Google Scholar
  9. 9.
    O. M. Phillips, Dynamics of the Ocean Upper Layer [in Russian], Gidrometeoizdat, Leningrad (1980).Google Scholar
  10. 10.
    O. M. Phillips, “The scattering of gravity waves by turbulence,” J. Fluid Mech.,5, pt. 2 (1959).Google Scholar
  11. 11.
    O. M. Phillips, “A note on the turbulence generated by gravity waves,” J. Geophys. Res.,66, No. 9 (1961).Google Scholar
  12. 12.
    V. E. Zakharov, “Hamiltonian formalism for waves in nonlinear media with scattering,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 4 (1974).Google Scholar
  13. 13.
    V. E. Zakharov and V. S. L'vov, “Statistical description of nonlinear wave fields,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,18, No. 10 (1975).Google Scholar
  14. 14.
    R. H. Kraichnan, “The structure of isotropic turbulence at very high Reynolds numbers,” J. Fluid Mech.,5, No. 4 (1959).Google Scholar
  15. 15.
    V. S. L'vov, “Theory of fully developed hydrodynamic turbulence,” Preprint Institute of Automation and Electrometry, Siberian Branch, Akad. Nauk SSSR, Novosibirsk, No. 53 (1977).Google Scholar
  16. 16.
    E. A. Kuznetsov and V. S. L'vov, “On the Kolmogorov turbulent spectrum in the direct interaction model,” Phys. Lett., 64A, No. 2 (1977).Google Scholar
  17. 17.
    A. G. Sazontov, “Two dimensional turbulence spectra,” Zh. Prikl. Mekh. Tekh. Fizi., No. 2 (1981).Google Scholar
  18. 18.
    A. G. Boev, “Damping of surface waves by strong turbulence,” Izv. Akad. Nauk SSSR, Ser. FAO,7, No. 1 (1971).Google Scholar
  19. 19.
    V. E. Zakharov and N. N. Filonenko, “Energy spectrum for stochastic fluctuations of liquid surface,” Dokl. Akad. Nauk SSSR,170, No. 6 (1966).Google Scholar
  20. 20.
    O. M. Phillips, “The equilibrium range in the spectrum of wind-generated waves,” J. Fluid Mech.,4, Part 4 (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. G. Sazontov
    • 1
  1. 1.Gor'kii

Personalised recommendations