Multivalued displacements and volterra dislocations in plane nonlinear elasticity theory

  • L. M. Zubov
  • M. I. Karyakin
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Elasticity Theory Nonlinear Elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. I. Muskhelishvili, Certain Fundamental Problems of Mathematical Elasticity Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    A. I. Lur'e, Nonlinear Elasticity Theory [in Russian], Nauka, Moscow (1980).Google Scholar
  3. 3.
    A. E. Green and J. F. Adkins, Large Elastic Deformations, 2nd Ed., Oxford Univ. Press (1971).Google Scholar
  4. 4.
    K. F. Chernykh, “Generalized plane strain in nonlinear elasticity theory,” Prikl. Mekh.,13, No. 1 (1977).Google Scholar
  5. 5.
    L. M. Zubov, “Theory of torsion of prismatic rods under finite strains,” Dokl. Akad. Nauk SSSR,270, No. 4 (1983).Google Scholar
  6. 6.
    S. K. Godunov, Elements of the Mechanics of a Continuous Medium [in Russian], Nauka, Moscow (1978).Google Scholar
  7. 7.
    L. I. Sedov, Introduction to the Mechanics of a Continuous Medium [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  8. 8.
    L. M. Zubov, Methods of Nonlinear Elasticity Theory in Shell Theory [in Russian], Rostov Univ. (1982).Google Scholar
  9. 9.
    R. DeWitt, Continual Theory of Disclination [Russian translation], Mir, Moscow (1977).Google Scholar
  10. 10.
    Yu. N. Rabotnov, Mechanics of a Deformable Solid [in Russian], Nauka, Moscow (1979).Google Scholar
  11. 11.
    A. I. Lur'e, Elasticity Theory [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • L. M. Zubov
    • 1
  • M. I. Karyakin
    • 1
  1. 1.Rostov-on-Don

Personalised recommendations