Some contact problems in steady-state nonlinear creep in cases with thin coverings

  • V. M. Aleksandrov
  • E. V. Kovalenko


Mathematical Modeling Mechanical Engineer Industrial Mathematic Contact Problem Thin Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. M. Kachanov, Theory of Creep [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  2. 2.
    M. A. Sumbatyan, “A plane problem for a thin layer under conditions of steady-state nonlinear creep,” Izv. Akad. Nauk Arm. SSR, Mekh.,33, No. 1 (1980).Google Scholar
  3. 3.
    V. M. Aleksandrov and N. Kh. Arutyunyan, “Some problems in the mechanics of an ice cover,” in: Modern Problems in Mechanics and Aviation [in Russian], Mashinostroenie, Moscow (1981).Google Scholar
  4. 4.
    I. I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems in the Theory of Elasticity [in Russian], Nauka, Moscow (1974).Google Scholar
  5. 5.
    E. V. Kovalenko, “An effective method for the solution of contact problems for a linearly deformed base with a thin reinforcing covering,” Izv. Akad. Nauk Arm. SSR, Mekh.,32, No. 2 (1979).Google Scholar
  6. 6.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    R. Bellman, Introduction to Matrix Theory [Russian translation], Nauka, Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. M. Aleksandrov
    • 1
  • E. V. Kovalenko
    • 1
  1. 1.Moscow

Personalised recommendations