Efficiency of a plasma dynamic laser

  • G. M. Zhinzhikov
  • V. I. Kislov
  • G. A. Luk'yanov
  • N. O. Pavlova


Mathematical Modeling Mechanical Engineer Industrial Mathematic Plasma Dynamic Dynamic Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Boiko, F. V. Bunkin, et al., “Active laser media based on recombining plasma of multiply charged ions,” Izv. Akad. Nauk SSSR, Ser. Fiz.,48, No. 8 (1984).Google Scholar
  2. 2.
    A. M. Prokhorov (ed.), Handbook of Lasers [in Russian], Sov. Radio, Moscow (1978), Vol. 1.Google Scholar
  3. 3.
    L. I. Gudzenko, S. S. Filippov, and L. A. Shelepin, “Rapidly recombining plasma jet,” Zh. Eksp. Teor. Fiz.,51, No. 4 (1966).Google Scholar
  4. 4.
    W. T. Silfvast, L. H. Szeto, and O. R. Wood II, “CO2-laser-produced plasma-initiated neutral-gas recombination lasers,” J. Appl. Phys.,50, No. 12 (1979).Google Scholar
  5. 5.
    A. V. Eletskii and B. M. Smirnov, Physical Processes in Gas Lasers [in Russian], Énergoatomizdat, Moscow (1985).Google Scholar
  6. 6.
    G. A. Abil'silitov, E. P. Velikhov, V. S. Golubev, et al., Powerful Gas-Dynamic CO2 Lasers and Their Application in Technology [in Russian], Nauka, Moscow (1984).Google Scholar
  7. 7.
    S. A. Losev, Gas-Dynamic Lasers [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    Yu. A. Anan'ev, Optical Resonators and the Problem of Divergence of Laser Radiation [in Russian], Nauka, Moscow (1979).Google Scholar
  9. 9.
    G. I. Kozlov and S. A. Reshetnyak, “Calculation of the parameters of the plasma-dynamic lithium-vapor laser,” Zh. Tekh. Fiz.,47, No. 7 (1977).Google Scholar
  10. 10.
    V. I. Kislov and G. A. Luk'yanov, “Numerical study of levelwise relaxation in a steadily expanding lithium plasma,” Abstracts of Reports at the 6th All-Union Conference on the Physics of Low-Temperature Plasma, Leningrad (1983), Vol. 1.Google Scholar
  11. 11.
    V. I. Kislov, G. A. Luk'yanov, and M. A. Fedotov, “Numerical study of population inversion on the levels of lithium-like beryllium ions in spatially symmetric expansion of a plasmoid,” ibid.Google Scholar
  12. 12.
    V. I. Kislov, G. A. Luk'yanov, et al., “Some problems in plasma kinetics in the presence of radiation and a condensed dispersed phase,” Preprint No. 878, Physicotechnical Institute of the USSR Academy of Sciences, Leningrad (1984).Google Scholar
  13. 13.
    F. V. Bunkin, V. I. Derzhiev, and S. I. Yakovlenko, “Prospects for amplification of far-UV radiation (review),” Kvantovaya Elektron.,8, No. 8 (1981).Google Scholar
  14. 14.
    G. A. Luk'yanov, “Recombination plasma-dynamic laser based on a freely expanding hydrogen plasma jet,” Zh. Tekh. Fiz.,46, No. 4 (1976).Google Scholar
  15. 15.
    L. I. Gudzenko, V. V. Evstigneev, and S. I. Yakovlenko, “Plasma lasers on transitions in atoms and atomic ions,” in: Kinetics of Simple Models in the Theory of Oscillations [in Russian], Nauka, Moscow (1976).Google Scholar
  16. 16.
    A. R. Striganov and G. A. Odintsova, Handbook of Tables of Spectral Lines of Atoms and Ions [in Russian], Énergoizdat, Moscow (1982).Google Scholar
  17. 17.
    A. V. Gurevich and L. P. Pitaevskii, “Recombination coefficient in a dense low-temperature plasma,” Zh. Eksp. Teor. Fiz.,46, No. 4 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • G. M. Zhinzhikov
    • 1
  • V. I. Kislov
    • 1
  • G. A. Luk'yanov
    • 1
  • N. O. Pavlova
    • 1
  1. 1.Leningrad

Personalised recommendations