Generation of internal waves under the combined translational and vibrational motion of a cylinder in a fluid bilayer

  • V. I. Bukreev
  • A. V. Gusev
  • I. V. Sturova
Article
  • 23 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Internal Wave Vibrational Motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. V. Sturova, “Internal waves in a fluid bilayer for unsteady motion of a body,” in: Dynamics of Continuous Media [in Russian], Inst. Hydrodynamics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, issue 70 (1985).Google Scholar
  2. 2.
    I. S. Dolina, “Amplification of the vibrational motion of a body in a stratified fluid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1984).Google Scholar
  3. 3.
    G. Dagan and T. Miloh, “Free-surface flow past oscillating singularities at the resonant frequency,” J. Fluid Mech.,120 (1982).Google Scholar
  4. 4.
    T. R. Akylas, “On the excitation of nonlinear waves by a moving pressure distribution oscillating at the resonant frequency,” Phys. Fluids,27, No. 12 (1984).Google Scholar
  5. 5.
    Yu. D. Chashechkin, S. A. Makarov, and V. S. Belyaev, “Associated internal waves” [in Russian], Preprint No. 214, Inst. of Problems of Mechanics, Academy of Sciences of the USSR, Moscow (1983).Google Scholar
  6. 6.
    T. N. Stevenson and N. H. Thomas, “Two-dimensional internal waves generated by a traveling oscillating cylinder,” J. Fluid Mech.,36, 3 (1969).Google Scholar
  7. 7.
    V. I. Bukreev, A. V. Gusev, and I. V. Sturova, “Waves from an oscillating cylinder in a viscous fluid bilayer,” in: Dynamics of Continuous Media [in Russian], Inst. of Hydrodynamics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1985).Google Scholar
  8. 8.
    N. N. Borodina, V. I. Bukreev, A. V. Gusev, and I. V. Sturova, “Viscous damping of internal waves in a fluid bilayer generated by the motion of a cylinder,” in: Dynamics of Continuous Media [in Russian], Inst. of Hydrodynamics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. I. Bukreev
    • 1
  • A. V. Gusev
    • 1
  • I. V. Sturova
    • 1
  1. 1.Novosibirsk

Personalised recommendations