Nonequilibrium rotational distribution function for D2O molecules in a rarefied supersonic jet

  • S. S. Bakastov
  • V. K. Konyukhov
  • V. I. Tikhonov


Mathematical Modeling Distribution Function Mechanical Engineer Industrial Mathematic Rotational Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. J. Belbruno, J. Gelfand, and H. Rabitz, “Rotational relaxation rates in HF and Ar-HF from the direct inversion of pressure broadened linewidths,” J. Chem. Phys.,75, No. 10 (1981).Google Scholar
  2. 2.
    J. A. Burnes, M. Keil, et al., “Energy transfer as a function of collision energy,” J. Chem. Phys.,76, No. 2 (1982).Google Scholar
  3. 3.
    J. C. Polany and K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys.,56, 1563 (1972).Google Scholar
  4. 4.
    B. N. Borzenko, N. V. Karelov, et al., “An experimental investigation of the populations of rotational levels of molecules in a free nitrogen jet,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1976).Google Scholar
  5. 5.
    S. G. Kukolich, D. E. Gates, and J. H. S. Wang, “Rotational energy distribution in a nozzle beam,” J. Chem. Phys.,61, 4686 (1974).Google Scholar
  6. 6.
    P. A. Skovorodko, “Rotational relaxation in the expansion of a gas into a vacuum,” in: Dynamics of Rarefied Gases [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1976).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  8. 8.
    V. D. Borman, A. S. Bruev, et al., “On the symmetry of the interaction of molecules with rotational degrees of freedom,” Teor. Mat. Fiz.,13, No. 2 (1972).Google Scholar
  9. 9.
    V. I. Selyakov, “Probabilities of rotational transitions of a water molecule in a collision with an atom,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1980).Google Scholar
  10. 10.
    T. Oka, “Collision-induced transitions between rotational levels,” Adv. At. Mol. Phys.,9, 127 (1983).Google Scholar
  11. 11.
    E. D. Bulatov, E. A. Vinogradov, et al., “Rotational nonequilibrium of H216O molecules in a supersonic jet of rarefied water vapor,” Zh. Eksp. Teor. Fiz.,76, 543 (1979).Google Scholar
  12. 12.
    E. D. Bulatov, E. A. Vinogradov, et al., “Determination of the times of rotational relaxation of D2O molecules in D2O-D2O, D2-Ar, and D2O-He collisions under the conditions of a a supersonic gas stream,” Preprint Fiz. Inst. Akad. Nauk SSSR, No. 24 (1981).Google Scholar
  13. 13.
    S. S. Bakastov, V. K. Konyukhov, and V. I. Tikhonov, “Kinetics of isolated subsystems of rotational levels of a molecule of heavy water in atom-molecule collisions,” Pis'ma Zh. Eksp. Teor. Fiz.,37, 427 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. S. Bakastov
    • 1
  • V. K. Konyukhov
    • 1
  • V. I. Tikhonov
    • 1
  1. 1.Moscow

Personalised recommendations