Journal of Applied Mechanics and Technical Physics

, Volume 21, Issue 5, pp 716–724 | Cite as

Construction of the time dependence of the relaxation of tangential stresses on the state parameters of a medium

  • L. A. Merzhievskii
  • S. A. Shamonin


Mathematical Modeling Mechanical Engineer Time Dependence State Parameter Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. I. Frenkel', The Kinetic Theory of Fluids [in Russian], Nauka, Leningrad (1975).Google Scholar
  2. 2.
    G. I. Gurevich, The Deformability of Media and the Propagation of Seismic Waves [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    S. K. Godunov, Elements of the Mechanics of a Continuous Medium [in Russian], Nauka, Moscow (1978).Google Scholar
  4. 4.
    S. K. Godunov, A. F. Demchuk, N. S. Kozin, and V. N. Mali, “Interpolation formulas of the dependence of the Maxwellian viscosity of some metals on the strength of the tangential stresses and the temperatures,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1974).Google Scholar
  5. 5.
    S. K. Godunov, V. V. Denisenko, N. S. Kozin, and N. K. Kuz'mina, “The application of the relaxation model of viscoelasticity in the calculation of uniform strains and the refinement of the interpolation formulas of Maxwellian viscosity,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1975).Google Scholar
  6. 6.
    W. G. Johnston and J. J. Gilman, “Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals,” J. Appl. Phys.,39, No. 2 (1959).Google Scholar
  7. 7.
    J. W. Taylor, “The dynamics of dislocations and dynamic yield,” Mekhanika (Mechanics),98, No. 4 (1966).Google Scholar
  8. 8.
    J. J. Gilman, “The dynamics of dislocations and the behavior of materials under impact,” Mekhanika (Mechanics),102, No. 2 (1970).Google Scholar
  9. 9.
    J. N. Johnson and L. M. Barker, “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,” J. Appl. Phys.,40, No. 11 (1969).Google Scholar
  10. 10.
    R. I. Nigmatulin and N. N. Kholin, “A model of an elastoplastic medium with dislocation kinetics of plastic deformation,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4 (1974).Google Scholar
  11. 11.
    L. A. Merzhievsky, “Numerical simulation of dynamic processes in a viscoelastic medium,” Arch. Mech.,30, Nos. 4–5 (1978).Google Scholar
  12. 12.
    Yu. V. Rakitskii, S. M. Ustinov, and I. G. Chernorutskii, Numerical Methods of the Solution of Stiff Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  13. 13.
    S. S. Artem'ev and G. V. Demidov, “An algorithm of variable order and step size for the numerical solution of stiff systems of ordinary differential equations,” Preprint VTs Sib. Otd. Akad. Nauk SSSR (1978).Google Scholar
  14. 14.
    S. K. Gudonov, N. S. Kozin, and E. I. Romenskii, “The equation of state of the elastic energy of metals with a nonspherical strain tensor,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1974).Google Scholar
  15. 15.
    J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel,” Philos. Mag.,21, No. 169 (1970).Google Scholar
  16. 16.
    A. Ya. Krasovskii, “The damping of elastic shock waves in iron caused by the viscous deceleration of dislocations,” Probl. Prochn., No. 7 (1970).Google Scholar
  17. 17.
    F. McClintock and A. Argon, Strain and Fracture of Materials [Russian translation], Mir, Moscow (1970).Google Scholar
  18. 18.
    J. J. Gilman, “Dislocation mobility in crystals,” J. Appl. Phys.,36, No. 10 (1965).Google Scholar
  19. 19.
    J. D. Campbell, R. H. Cooper, and T. J. Tischhof, “The dynamics of nonuniform plastic flow in low-carbon steel,” in: Dislocation Dynamics, McGraw-Hill, New York (1968).Google Scholar
  20. 20.
    M. G. Lozinskii and S. G. Fedotov, “Variation of the hardness of pure metals upon heating,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 4 (1954).Google Scholar
  21. 21.
    A. I. Betaneli, “The temperature dependence of the hardness of steels,” Prikl. Mat. Mekh.,3, 540–546 (1956).Google Scholar
  22. 22.
    V. K. Grigorovich, “The physical nature of microhardness,” in: Methods of Testing for Microhardness [in Russian], Nauka, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • L. A. Merzhievskii
    • 1
  • S. A. Shamonin
    • 1
  1. 1.Novosibirsk

Personalised recommendations