Interaction of a tornado-like vortex with solid boundaries

  • V. V. Nikulin


Vortex Mathematical Modeling Mechanical Engineer Industrial Mathematic Solid Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. V. Nalivkin, Hurricanes, Gales, and Typhoons [in Russian], Nauka, Leningrad (1969).Google Scholar
  2. 2.
    W. H. Hoecker, “Windspeed and airflow patterns in the Dallas tornado of April 2, 1957,” Mon. Weather Rev.,88, No. 5 (1960).Google Scholar
  3. 3.
    R. L. Ives, “Behavior of dust devil,” Bull. Am. Meteorol. Soc.,28, No. 4 (1947).Google Scholar
  4. 4.
    N. R. Williams, “Development of dust whirls and similar small-scale vortices,” Bull. Am. Meteorol. Soc.,29, No. 3 (1948).Google Scholar
  5. 5.
    P. C. Sinclair, “Some preliminary dust devil measurements,” Mon. Weather Rev.,92, No. 8 (1964).Google Scholar
  6. 6.
    S. J. Ying and C. C. Chang, “Exploratory model study of tornado-like vortex dynamics,” J. Atm. Sci.,27, No. 1 (1970).Google Scholar
  7. 7.
    C. A. Wan and C. C. Chang, “Measurement of the velocity field in the simulated tornadolike vortex using a three-dimensional velocity probe,” J. Atm. Sci.,29, No. 3 (1972).Google Scholar
  8. 8.
    N. B. Ward, “Exploration of certain features of tornado dynamics using a laboratory model,” J. Atm. Sci.,29, No. 6 (1972).Google Scholar
  9. 9.
    T. Maxworthy, “On the structure of concentrated columnar vortices,” Astron. Acta,17, Nos. 4–5 (1972).Google Scholar
  10. 10.
    C. T. Hsu et al., “Mechanism of tornado funnel formation,” Phys. Fluids,19, No. 12 (1976).Google Scholar
  11. 11.
    J. S. Turner, “The constraints imposed on tornado-like vortices by the top and bottom boundary conditions,” J. Fluid Mech.,25, No. 2 (1966).Google Scholar
  12. 12.
    A. Barcilon, “A theoretical and experimental model for a dust devil,” J. Atm. Sci.,24, No. 5 (1967).Google Scholar
  13. 13.
    V. A. Vladimirov, “Formation of vortex filaments from upward flows over an evaporating liquid,” Dokl. Akad. Nauk SSSR,236, No. 2 (1977).Google Scholar
  14. 14.
    L. N. Gutman, “Theoretical model of a waterspout,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 1 (1957).Google Scholar
  15. 15.
    F. A. Schraub, S. J. Kline, H. Henry, P. W. Runstadler, and A. Littell, “Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows,” Trans. Am. Soc. Mech. Eng., Ser. D,87, No. 2 (1965).Google Scholar
  16. 16.
    N. Rott and W. S. Lewellen, “Boundary layers in rotating flow,” in: Progress in the Aeronautical Sciences, Vol. 7 (1966), p. 111.Google Scholar
  17. 17.
    A. Barcilon, “Vortex decay above a stationary boundary,” J. Fluid Mech.,27, No. 1 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. V. Nikulin
    • 1
  1. 1.Novosibirsk

Personalised recommendations