Saturation ion current to an electric probe in a slowly moving plasma

  • M. S. Benilov
  • B. V. Rogov
  • G. A. Tirskii


Mathematical Modeling Mechanical Engineer Industrial Mathematic Electric Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. S. Benilov and G. A. Tirskii, “Saturation currents to a probe in a dense plasma,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1979).Google Scholar
  2. 2.
    Yu. P. Gupalo, Yu. S. Ryazentsev, and Yu. N. Syskov, “Diffusion towards a washed reacting particle of arbitrary shape,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1975).Google Scholar
  3. 3.
    H. Brenner, “Forced convection heat and mass transfer at small Péclet numbers from a particle of arbitrary shape,” Chem. Eng. Sci.,18, 2 (1963).Google Scholar
  4. 4.
    R. M. Clements, C. S. MacLatchy, and P. R. Smy, “Verification of static probe theory in a moving high-pressure plasma,” J. Appl. Phys.,43, No. 1 (1972).Google Scholar
  5. 5.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1978).Google Scholar
  6. 6.
    R. L. Chapkis and E. Baum, “Theory of a cooled spherical electrostatic probe in a continuum gas medium,” Raket. Tekh. Kosmon., No. 10 (1971).Google Scholar
  7. 7.
    I. L. Pankrat'eva and V. A. Polyanskii, “Theory of cooled electric probes in a dense plasma. Influence of thermodiffusion,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1979).Google Scholar
  8. 8.
    M. S. Benilov, B. V. Rogov, and G. A. Tirskii, “Theoretical determination of the saturation ion current to electric probes in subsonic plasma flow,” Teplofiz. Vys. Temp.,19, No. 5 (1981).Google Scholar
  9. 9.
    P. Chan, L. Talbot, and K. Turyan, Electrical Probes in Stationary and Moving Plasma [Russian translation], Mir, Moscow (1978).Google Scholar
  10. 10.
    M. S. Benilov, “Flow of a weakly ionized gas in a hypersonic viscous shock layer,” in: Aerodynamics of Hypersonic Flows with Blowing [in Russian], Moscow State Univ. (1979).Google Scholar
  11. 11.
    Tetsui Yanagi, “Behavior of electrostatic cylindrical probe in combustion products,” Jpn. J. Appl. Phys.,7, No. 6 (1968).Google Scholar
  12. 12.
    J. F. Armstrong, D. W. George, and H. K. Messerle, “Saturation of current to electrodes in MHD channels,” Raket. Tekh. Kosmon., No. 11 (1966).Google Scholar
  13. 13.
    R. J. Wolf, “Electrode effects in a plasma with additives,” Raket. Tekh. Kosmon., No. 12 (1966).Google Scholar
  14. 14.
    M. V. Zake and K. S. Landman, “Electrotransfer to the surfaces of a metal in a plasma jet under unsteady heating conditions,” Izv. Akad. Nauk Latv. SSR, Ser. Fiz. Tekh. Nauk, No. 2 (1977).Google Scholar
  15. 15.
    K. S. Landman, “Electric probe in a plasma with variable properties,” in: Fifth All-Union Conf. on Physics of Low-Temperature Plasma [in Russian], Kiev (1979).Google Scholar
  16. 16.
    I. A. Vasil'eva and V. F. Kosov, “Peculiarities in using the ion parts of probe characteristic in flow of combustion products with an easily ionized alkali additive,” Teplofiz. Vys. Temp.,19, No. 5 (1981).Google Scholar
  17. 17.
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill (1941).Google Scholar
  18. 18.
    I. M. Cohen, “Asymptotic theory of spherical electrostatic probes in a slightly ionized collision-dominated gas,” Phys. Fluids,6, No. 10 (1963).Google Scholar
  19. 19.
    C. H. Su and S. H. Lam, “Continuum theory of spherical electrostatic probes,” Phys. Fluids,6, No. 10 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • M. S. Benilov
    • 1
  • B. V. Rogov
    • 1
  • G. A. Tirskii
    • 1
  1. 1.Moscow

Personalised recommendations