Monatshefte für Chemie / Chemical Monthly

, Volume 104, Issue 5, pp 1231–1239 | Cite as

Kinetik und Mechanismus der Substitutionsreaktionen von Komplexverbindungen, 47. Mitt.: Aquationskinetik descis-[Co(en)2Cl (m-Toluidin)]2+ in sauren Lösungen

  • Cs. Várhelyi
  • J. Zsakó
  • A. Ionuţ
Anorganische, Struktur- und Physikalische Chemie

Kinetics and mechanism of substitution reactions of complexes XLVII: Aquation kinetics of cis-[Co(en)2Cl (m-toluidine)]2+ in acid solutions


The complex salt [Co(en)2Cl(m-toluidine)](NO3)2 has been synthesized and itscis configuration has been proved on the basis of i.r. spectra. The aquation kinetics of the complex ion has been studied at 4 temperatures in the presence of various amounts of perchloric acid. Experimental data are explained by assuming the following reaction scheme: the amino complex (I) is in equilibrium with its conjugated base, i.e. with the amido-complex (II). The equilibrium constant seems to be of the order of magnitude of 10−3. Both forms of the complex ion participate to aquation reactions. For the amino-form an activation energy of ΔH=25.6 kcal/mole and for the amido-form ΔH=20.4 kcal/mole have been found. These data are compared to the kinetic parameters of the aquation reaction of analogous complexes, and they are discussed, by presuming a dissociation mechanism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Meisenheimer undE. Kiderlen, Ann. Chem.438, 217 (1924).Google Scholar
  2. 2.
    A. V. Ablov, Bull. Soc. Chim. France [5]3, 2270 (1936).Google Scholar
  3. 3.
    A. V. Ablov, Bull. Soc. Chim. France [5]4, 1783 (1937).Google Scholar
  4. 4.
    J. Bailar undL. B. Clapp, J. Amer. Chem. Soc.67, 171 (1945).Google Scholar
  5. 5.
    V. D. Panasyuk undL. G. Reiter, J. Neorg. Khim.8, 1131 (1963);11, 607 (1966);12, 2434 (1967);V. D. Panasyuk, L. G. Reiter undN. T. Maiboroda, J. Neorg. Khim.12, 402 (1967).Google Scholar
  6. 6.
    S. C. Chan undF. Leh, J. Chem. Soc.A 1966, 124, 129; 137; 138;1967, 573, 908; 1730;1968, 1079.Google Scholar
  7. 7.
    J. Zsakó, Cs. Várhelyi undL. Banici, Stud. Univ. Babeş-Bolyai, Chem.13 (2), 21 (1968).Google Scholar
  8. 8.
    J. Zsakó, Cs. Várhelyi undD. Dobocan, J. inorg. nuclear Chem.31, 1459 (1969).Google Scholar
  9. 9.
    Cs. Várhelyi undJ. Zsakó, Rev. Roum. Chim.16, 1185 (1971).Google Scholar
  10. 10.
    J. Zsakó, Cs. Várhelyi undS. Bleoca, Acta Chim. Acad. Sci. Hung.70, 175 (1971).Google Scholar
  11. 11.
    J. Nanda, Inorg. Chem.8, 104 (1969).Google Scholar
  12. 12.
    S. C. Chan undO. W. Lau, Austral. J. Chem.22, 1851 (1969).Google Scholar
  13. 13.
    J. Zsakó, Cs. Várhelyi undE. J. Maxim, Rev. Chim. Minérale, 1973, im Druck.Google Scholar
  14. 14.
    N. K. Chawla, D. G. Lambert undM. M. Jones, J. Amer. Chem. Soc.89, 557 (1967).Google Scholar
  15. 15.
    M. E. Baldwin, J. Chem. Soc.1960, 4369.Google Scholar
  16. 16.
    H. Block, Trans. Faraday Soc.55, 867 (1959).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Cs. Várhelyi
    • 1
  • J. Zsakó
    • 1
  • A. Ionuţ
    • 1
  1. 1.Chemischen Fakultät der „Babeş-Bolyai”-Universität ClujRumänien

Personalised recommendations